Abstract

A novel photon-counting optical time-domain reflectometry (<i>ν</i>-OTDR) based on superconducting nanowire single- photon detector (SNSPD) is proposed and demonstrated experimentally. Benefiting from the low noise equivalent power (NEP), high repetition rate and low timing jitter of the SNSPD, our <i>ν</i>-OTDR system achieves a dynamic range of 22 dB after measurement time of 15 minutes. This obtainable dynamic range corresponds to a sensing length of 110 km. The system exhibits 6.0 cm spatial resolution at the end of 2 km and 1.1 m spatial resolution at the end of 26 km standard single-mode fiber. Considering the performance we obtained now and the increasing improvement of the fabrication technology, the SNSPD is promising in the field of fiber sensors.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. Derickson, Fiber Optic Tests and Measurement (Prentice-Hall, 1998).
  2. M. Wegmüller, F. Scholder, N. Gisin, "Photon-counting OTDR for local birefringence and fault analysis in the metro environment," J. Lightw. Technol. 22, 390-400 (2004).
  3. F. Scholder, J. D. Gautier, M. Wegmuller, N. Gisin, "Long-distance OTDR using photon counting and large detection gates at telecom wavelength," Opt. Commun. 213, 57-61 (2002).
  4. A. L. Lacaita, P. A. Francese, S. D. Cova, "Single-photon optical time-domain reflectometer at 1.3 m with 5-cm resolution and high sensitivity," Opt. Lett. 18, 1110-1112 (1993).
  5. E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, H. Takesue, "1.5 μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide," Opt. Lett. 31, 727-730 (2006).
  6. P. Eraerds, M. Legré, J. Zhang, H. Zbinden, N. Gisin, "Photon counting OTDR: Advantages and limitations," J. Lightw. Technol. 28, 952-964 (2010).
  7. M. Legré, R. Thew, H. Zbinden, N. Gisin, "High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module," Opt. Exp. 15, 8237-8242 (2007).
  8. M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, "Photon level rosstalk between parallel fibers installed in urban area," Opt. Exp. 18, 22199-22207 (2010).
  9. M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, "High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors," Appl. Phys. Lett. 99, 201110-1-201110-3 (2011).
  10. L. Zhang, Q. Zhao, Y. Zhong, J. Chen, C. Cao, W. Xu, L. Kang, P. Wu, W. Shi, "Single photon detectors based on superconducting nanowires over large active areas," Appl. Phys. B 97, 187-191 (2009).
  11. L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, P. Wu, "Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires," Appl. Phys. B 102, 867-871 (2011).
  12. G. Goltsman, A. Korneev, A. Divochiy, O. Minaeva, M. Tarkhov, N. Kaurova, V. Seleznev, B. Voronov, O. Okunev, A. Antipov, K. Smirnov, Y. Vachtomin, I. Milostnaya, G. Chulkova, "Ultrafast superconducting single-photon detector," J. Mod. Opt. 56, 1670-1680 (2009).
  13. M. Fujiwara, A. Tanaka, S. Takahashi, K. Yoshino, Y. Nambu, A. Tajima, S. Miki, T. Yamashita, Z. Wang, A. Tomita, M. Sasaki, "Afterpulse-like phenomenon of superconducting single photon detector in high speed quantum key distribution system," Opt. Exp. 19, 19562-19571 (2011).
  14. Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, P. Wu, "Intrinsic timing jitter of superconducting nanowire single-photon detectors," Appl. Phys. B 104, 673-678 (2011).
  15. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," Appl. Phys. Lett. 88, 111116-1-111116-3 (2006).
  16. B. F. Levine, C. G. Bethea, J. C. Campbell, "1.52 μm room-temperature photon-counting optical time domain reflectometer," Electron. Lett. 21, 194-196 (1985).

2011 (4)

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, "High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors," Appl. Phys. Lett. 99, 201110-1-201110-3 (2011).

M. Fujiwara, A. Tanaka, S. Takahashi, K. Yoshino, Y. Nambu, A. Tajima, S. Miki, T. Yamashita, Z. Wang, A. Tomita, M. Sasaki, "Afterpulse-like phenomenon of superconducting single photon detector in high speed quantum key distribution system," Opt. Exp. 19, 19562-19571 (2011).

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, P. Wu, "Intrinsic timing jitter of superconducting nanowire single-photon detectors," Appl. Phys. B 104, 673-678 (2011).

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, P. Wu, "Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires," Appl. Phys. B 102, 867-871 (2011).

2010 (2)

M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, "Photon level rosstalk between parallel fibers installed in urban area," Opt. Exp. 18, 22199-22207 (2010).

P. Eraerds, M. Legré, J. Zhang, H. Zbinden, N. Gisin, "Photon counting OTDR: Advantages and limitations," J. Lightw. Technol. 28, 952-964 (2010).

2009 (2)

L. Zhang, Q. Zhao, Y. Zhong, J. Chen, C. Cao, W. Xu, L. Kang, P. Wu, W. Shi, "Single photon detectors based on superconducting nanowires over large active areas," Appl. Phys. B 97, 187-191 (2009).

G. Goltsman, A. Korneev, A. Divochiy, O. Minaeva, M. Tarkhov, N. Kaurova, V. Seleznev, B. Voronov, O. Okunev, A. Antipov, K. Smirnov, Y. Vachtomin, I. Milostnaya, G. Chulkova, "Ultrafast superconducting single-photon detector," J. Mod. Opt. 56, 1670-1680 (2009).

2007 (1)

M. Legré, R. Thew, H. Zbinden, N. Gisin, "High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module," Opt. Exp. 15, 8237-8242 (2007).

2006 (2)

J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," Appl. Phys. Lett. 88, 111116-1-111116-3 (2006).

E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, H. Takesue, "1.5 μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide," Opt. Lett. 31, 727-730 (2006).

2004 (1)

M. Wegmüller, F. Scholder, N. Gisin, "Photon-counting OTDR for local birefringence and fault analysis in the metro environment," J. Lightw. Technol. 22, 390-400 (2004).

2002 (1)

F. Scholder, J. D. Gautier, M. Wegmuller, N. Gisin, "Long-distance OTDR using photon counting and large detection gates at telecom wavelength," Opt. Commun. 213, 57-61 (2002).

1993 (1)

1985 (1)

B. F. Levine, C. G. Bethea, J. C. Campbell, "1.52 μm room-temperature photon-counting optical time domain reflectometer," Electron. Lett. 21, 194-196 (1985).

Appl. Phys. B (1)

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, P. Wu, "Intrinsic timing jitter of superconducting nanowire single-photon detectors," Appl. Phys. B 104, 673-678 (2011).

Appl. Phys. Lett. (1)

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, "High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors," Appl. Phys. Lett. 99, 201110-1-201110-3 (2011).

Appl. Phys. B (2)

L. Zhang, Q. Zhao, Y. Zhong, J. Chen, C. Cao, W. Xu, L. Kang, P. Wu, W. Shi, "Single photon detectors based on superconducting nanowires over large active areas," Appl. Phys. B 97, 187-191 (2009).

L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, P. Wu, "Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires," Appl. Phys. B 102, 867-871 (2011).

Appl. Phys. Lett. (1)

J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," Appl. Phys. Lett. 88, 111116-1-111116-3 (2006).

Electron. Lett. (1)

B. F. Levine, C. G. Bethea, J. C. Campbell, "1.52 μm room-temperature photon-counting optical time domain reflectometer," Electron. Lett. 21, 194-196 (1985).

J. Lightw. Technol. (1)

M. Wegmüller, F. Scholder, N. Gisin, "Photon-counting OTDR for local birefringence and fault analysis in the metro environment," J. Lightw. Technol. 22, 390-400 (2004).

J. Lightw. Technol. (1)

P. Eraerds, M. Legré, J. Zhang, H. Zbinden, N. Gisin, "Photon counting OTDR: Advantages and limitations," J. Lightw. Technol. 28, 952-964 (2010).

J. Mod. Opt. (1)

G. Goltsman, A. Korneev, A. Divochiy, O. Minaeva, M. Tarkhov, N. Kaurova, V. Seleznev, B. Voronov, O. Okunev, A. Antipov, K. Smirnov, Y. Vachtomin, I. Milostnaya, G. Chulkova, "Ultrafast superconducting single-photon detector," J. Mod. Opt. 56, 1670-1680 (2009).

Opt. Commun. (1)

F. Scholder, J. D. Gautier, M. Wegmuller, N. Gisin, "Long-distance OTDR using photon counting and large detection gates at telecom wavelength," Opt. Commun. 213, 57-61 (2002).

Opt. Exp. (1)

M. Legré, R. Thew, H. Zbinden, N. Gisin, "High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module," Opt. Exp. 15, 8237-8242 (2007).

Opt. Exp. (2)

M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, "Photon level rosstalk between parallel fibers installed in urban area," Opt. Exp. 18, 22199-22207 (2010).

M. Fujiwara, A. Tanaka, S. Takahashi, K. Yoshino, Y. Nambu, A. Tajima, S. Miki, T. Yamashita, Z. Wang, A. Tomita, M. Sasaki, "Afterpulse-like phenomenon of superconducting single photon detector in high speed quantum key distribution system," Opt. Exp. 19, 19562-19571 (2011).

Opt. Lett. (2)

Other (1)

D. Derickson, Fiber Optic Tests and Measurement (Prentice-Hall, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.