Abstract

A method is proposed for extracting the ellipsometric parameters of isotropic and anisotropic thin films from the Stokes parameters obtained for five different input polarization lights, namely four linearly polarized lights and one right-hand circular polarized light. In the proposed approach, the genetic algorithm in curve fitting is used to extract the refractive index and thickness properties of the isotropic or anisotropic sample from the experimental results obtained for the variation of the ellipsometric parameters with the incident angle. Finally, the experimental values of the ellipsometric parameters and the simulated values are compared. It is shown that for a typical isotropic thin film, the average standard deviations of Ψ<sub><i>pp</i></sub> and Δ<sub><i>pp</i></sub> are 0.020° and 0.464°, respectively. Meanwhile, for a typical anisotropic thin film, the average standard deviations of Ψ<sub><i>pp</i></sub>, Ψ<sub><i>ps</i></sub>, Ψ<sub><i>sp</i></sub>, Δ<sub><i>pp</i></sub>, Δ<sub><i>ps</i></sub>, and Δ<sub><i>sp</i></sub> are found to be 0.014°, 0.047°, 0.041°, 0.312°, 0.402°, and 0.571°, respectively. Overall, the results presented in this study confirm that the proposed method provides a straightforward and reliable means of extracting the ellipsometric parameters of isotropic and anisotropic materials by Stokes parameters using five independent input polarization lights. Specially, the ellipsometric parameters of anisotropic thin film expressed by Stokes parameters or Mueller elements are explicitly presented.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. E. Aspenes, A. A. Studna, "High precision scanning ellipsometer," Appl. Opt. 14, 220-228 (1975).
  2. P. S. Hauge, F. H. Dill, "A rotating-compensator Fourier ellipsometer," Opt. Commun. 14, 431-443 (1975).
  3. S. N. Jasperson, S. E. Schnatterly, "An improved method for high reflectivity ellipsometry based on a new polarization modulation technique," Rev. Sci. Instrum. 40, 761-767 (1969).
  4. P. S. Hauge, R. H. Muller, C. G. Smith, "Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry," Surf. Sci. 96, 81-107 (1980).
  5. G. F. Beardsley, "Mueller scattering matrix of sea water," J. Opt. Soc. Am. 58, 52-57 (1968).
  6. R. M. A. Azzam, "Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal," Opt. Lett. 2, 148-150 (1978).
  7. R. M. A. Azzam, "A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices," Opt. Commun. 25, 137-140 (1978).
  8. R. M. A. Azzam, K. A. Giardina, A. G. Lopez, "Conventional and generalized ellipsometry using the four-detector photopolarimeter," Opt. Eng. 30, 1583-1589 (1991).
  9. E. Compain, B. Drevillon, J. Huc, J. Y. Parey, J. E. Bouree, "Complete Mueller matrix measurement with a single high frequency modulation," Thin Solid Films 313–314, 47-52 (1998).
  10. R. W. Collins, J. J. Koh, "Dual rotating-compensator multichannel ellipsometer: Instrument design for real-time Mueller matrix spectroscopy of surfaces and films," J. Opt. Soc. Am. A 16, 1997-2006 (1999).
  11. A. Laskarakis, S. Logothetidis, E. Pavlopoulou, M. Gioti, "Mueller matrix spectroscopic ellipsometry: Formulation and application," Thin Solid Films 455–456, 43-49 (2003).
  12. H. Fujiwara, Spectroscopic Ellipsometry—Principles and Applications (Wiley, 2007).
  13. P. C. Chen, Y. L. Lo, T. C. Yu, J. F. Lin, T. T. Yang, "Mueller-matrix-based polarimeter for the determination of the properties of optically anisotropic materials," Opt. Exp. 17, 15860-15884 (2009).
  14. Y. L. Lo, T. Pham, P. C. Chen, "Characterization on five effective parameters of anisotropic optical material using Stokes parameters—Demonstration by a fiber-type polarimeter," Opt. Exp. 18, 9133-9150 (2010).
  15. D. W. Berreman, "Optics in stratified and anisotropic media 4×4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).

2010 (1)

Y. L. Lo, T. Pham, P. C. Chen, "Characterization on five effective parameters of anisotropic optical material using Stokes parameters—Demonstration by a fiber-type polarimeter," Opt. Exp. 18, 9133-9150 (2010).

2009 (1)

P. C. Chen, Y. L. Lo, T. C. Yu, J. F. Lin, T. T. Yang, "Mueller-matrix-based polarimeter for the determination of the properties of optically anisotropic materials," Opt. Exp. 17, 15860-15884 (2009).

2003 (1)

A. Laskarakis, S. Logothetidis, E. Pavlopoulou, M. Gioti, "Mueller matrix spectroscopic ellipsometry: Formulation and application," Thin Solid Films 455–456, 43-49 (2003).

1999 (1)

1998 (1)

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, J. E. Bouree, "Complete Mueller matrix measurement with a single high frequency modulation," Thin Solid Films 313–314, 47-52 (1998).

1991 (1)

R. M. A. Azzam, K. A. Giardina, A. G. Lopez, "Conventional and generalized ellipsometry using the four-detector photopolarimeter," Opt. Eng. 30, 1583-1589 (1991).

1980 (1)

P. S. Hauge, R. H. Muller, C. G. Smith, "Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry," Surf. Sci. 96, 81-107 (1980).

1978 (2)

R. M. A. Azzam, "Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal," Opt. Lett. 2, 148-150 (1978).

R. M. A. Azzam, "A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices," Opt. Commun. 25, 137-140 (1978).

1975 (2)

D. E. Aspenes, A. A. Studna, "High precision scanning ellipsometer," Appl. Opt. 14, 220-228 (1975).

P. S. Hauge, F. H. Dill, "A rotating-compensator Fourier ellipsometer," Opt. Commun. 14, 431-443 (1975).

1972 (1)

1969 (1)

S. N. Jasperson, S. E. Schnatterly, "An improved method for high reflectivity ellipsometry based on a new polarization modulation technique," Rev. Sci. Instrum. 40, 761-767 (1969).

1968 (1)

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

R. M. A. Azzam, "A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices," Opt. Commun. 25, 137-140 (1978).

P. S. Hauge, F. H. Dill, "A rotating-compensator Fourier ellipsometer," Opt. Commun. 14, 431-443 (1975).

Opt. Eng. (1)

R. M. A. Azzam, K. A. Giardina, A. G. Lopez, "Conventional and generalized ellipsometry using the four-detector photopolarimeter," Opt. Eng. 30, 1583-1589 (1991).

Opt. Exp. (2)

P. C. Chen, Y. L. Lo, T. C. Yu, J. F. Lin, T. T. Yang, "Mueller-matrix-based polarimeter for the determination of the properties of optically anisotropic materials," Opt. Exp. 17, 15860-15884 (2009).

Y. L. Lo, T. Pham, P. C. Chen, "Characterization on five effective parameters of anisotropic optical material using Stokes parameters—Demonstration by a fiber-type polarimeter," Opt. Exp. 18, 9133-9150 (2010).

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

S. N. Jasperson, S. E. Schnatterly, "An improved method for high reflectivity ellipsometry based on a new polarization modulation technique," Rev. Sci. Instrum. 40, 761-767 (1969).

Surf. Sci. (1)

P. S. Hauge, R. H. Muller, C. G. Smith, "Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry," Surf. Sci. 96, 81-107 (1980).

Thin Solid Films (2)

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, J. E. Bouree, "Complete Mueller matrix measurement with a single high frequency modulation," Thin Solid Films 313–314, 47-52 (1998).

A. Laskarakis, S. Logothetidis, E. Pavlopoulou, M. Gioti, "Mueller matrix spectroscopic ellipsometry: Formulation and application," Thin Solid Films 455–456, 43-49 (2003).

Other (1)

H. Fujiwara, Spectroscopic Ellipsometry—Principles and Applications (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.