Abstract

All-optical relaying techniques are proposed to improve the error performance and overall distance coverage of free-space optical (FSO) communication systems. An all-optical amplify-and-forward (OAF) relaying technique is presented where the received optical field is amplified at each relay. A novel channel model is developed including field distributions and weak turbulence. Simulation results indicate that OAF significantly enhances the BER performance, but is severely degraded by background light. In order to remove the impact of background noise, an optical regenerate-and-forward (ORF) relaying technique is also presented. At a bit rate of 10 Gbps, using two equally-spaced OAF relays under a turbulence-free atmospheric condition increases the total communicating distance by 0.9 km over direct transmission at a BER of 10<sup>-5</sup>, while using two ORF relays provides an additional gain in range of 1.9 km. In general, replacing OAF relays by ORF relays extends the total communicating distance at a cost of implementation complexity.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. X. Zhu, J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1300 (2002).
  2. X. Zhu, J. Kahn, "Performance bounds for coded free-space optical communications through atmospheric turbulence channels," IEEE Trans. Commun. 51, 1233-1239 (2003).
  3. M. Uysal, S. Navidpour, L. Jing, "Error rate performance of coded free-space optical links over strong turbulence channels," IEEE Commun. Lett. 8, 635-637 (2004).
  4. X. Zhu, J. Kahn, "Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 51, 509-516 (2003).
  5. E. Lee, V. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22, 1896-1906 (2004).
  6. M. Safari, M. Uysal, "Relay-assisted free-space optical communication," IEEE Trans. Wireless Commun. 7, 5441-5449 (2008) 12.
  7. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, N. C. Sagias, "Multihop free-space optical communications over turbulence channels," Proc. IEEE Int. Conf. Commun., 2006 (ICC'06) (2006) pp. 2755-2759.
  8. G. Karagiannidis, T. Tsiftsis, H. Sandalidis, "Outage probability of relayed free space optical communication systems," Electron. Lett. 42, 994-995 (2006).
  9. C. Datsikas, K. Peppas, N. Sagias, G. Tombras, "Serial free-space optical relaying communications over gamma-gamma atmospheric turbulence channels," IEEE/OSA J. Opt. Commun. Netw. 2, 576-586 (2010).
  10. A. Acampora, S. Krishnamurthy, "A broadband wireless access network based on mesh-connected free-space optical links," IEEE Pers. Commun. 6, 62-65 (1999).
  11. fSONA Optical Wireless. http://www.fsona.com.
  12. MRV Optical Communication Systems™ http://www.mrv.com.
  13. L. C. Andrews, R. L. Philips, Laser Beam Propagation Through Random Media (SPIE, 2005).
  14. G. P. Agrawal, Fiber Optic Communication Systems (Wiley, 2002).
  15. J. W. Goodman, Statistical Optics (Wiley-Interscience, 2000).
  16. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, 1995).
  17. H. Willebrand, B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Todays Networks (Sams Publishing, 2002).
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).
  19. H. Willebrand, B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Todays Networks (Sams Publishing, 2002).
  20. S. Karp, R. M. Gagliardi, Optical Channels (Plenum Press, 1988).
  21. S. Kazemlou, All-optical multihop free-space optical communication systems M.S. thesis McMaster Univ.HamiltonONCA (2010).
  22. P. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," Proc, 24th Eur. Conf. Opt. Commun. (1998) pp. 475-476.
  23. S. Norimatsu, M. Maruoka, "Accurate $Q$-factor estimation of optically amplified systems in the presence of waveform distortion," J. Lightw. Technol. 20, 19-27 (2002).
  24. J. A. Anguita, M. A. Neifeld, B. V. Vasic, "Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link," J. Appl. Opt. 46, 6561-6571 (2007).

2010 (1)

C. Datsikas, K. Peppas, N. Sagias, G. Tombras, "Serial free-space optical relaying communications over gamma-gamma atmospheric turbulence channels," IEEE/OSA J. Opt. Commun. Netw. 2, 576-586 (2010).

2008 (1)

M. Safari, M. Uysal, "Relay-assisted free-space optical communication," IEEE Trans. Wireless Commun. 7, 5441-5449 (2008) 12.

2007 (1)

J. A. Anguita, M. A. Neifeld, B. V. Vasic, "Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link," J. Appl. Opt. 46, 6561-6571 (2007).

2006 (1)

G. Karagiannidis, T. Tsiftsis, H. Sandalidis, "Outage probability of relayed free space optical communication systems," Electron. Lett. 42, 994-995 (2006).

2004 (2)

M. Uysal, S. Navidpour, L. Jing, "Error rate performance of coded free-space optical links over strong turbulence channels," IEEE Commun. Lett. 8, 635-637 (2004).

E. Lee, V. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22, 1896-1906 (2004).

2003 (2)

X. Zhu, J. Kahn, "Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 51, 509-516 (2003).

X. Zhu, J. Kahn, "Performance bounds for coded free-space optical communications through atmospheric turbulence channels," IEEE Trans. Commun. 51, 1233-1239 (2003).

2002 (2)

X. Zhu, J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1300 (2002).

S. Norimatsu, M. Maruoka, "Accurate $Q$-factor estimation of optically amplified systems in the presence of waveform distortion," J. Lightw. Technol. 20, 19-27 (2002).

1999 (1)

A. Acampora, S. Krishnamurthy, "A broadband wireless access network based on mesh-connected free-space optical links," IEEE Pers. Commun. 6, 62-65 (1999).

Electron. Lett. (1)

G. Karagiannidis, T. Tsiftsis, H. Sandalidis, "Outage probability of relayed free space optical communication systems," Electron. Lett. 42, 994-995 (2006).

IEEE Commun. Lett. (1)

M. Uysal, S. Navidpour, L. Jing, "Error rate performance of coded free-space optical links over strong turbulence channels," IEEE Commun. Lett. 8, 635-637 (2004).

IEEE J. Sel. Areas Commun. (1)

E. Lee, V. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22, 1896-1906 (2004).

IEEE Pers. Commun. (1)

A. Acampora, S. Krishnamurthy, "A broadband wireless access network based on mesh-connected free-space optical links," IEEE Pers. Commun. 6, 62-65 (1999).

IEEE Trans. Commun. (3)

X. Zhu, J. Kahn, "Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 51, 509-516 (2003).

X. Zhu, J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1300 (2002).

X. Zhu, J. Kahn, "Performance bounds for coded free-space optical communications through atmospheric turbulence channels," IEEE Trans. Commun. 51, 1233-1239 (2003).

IEEE Trans. Wireless Commun. (1)

M. Safari, M. Uysal, "Relay-assisted free-space optical communication," IEEE Trans. Wireless Commun. 7, 5441-5449 (2008) 12.

IEEE/OSA J. Opt. Commun. Netw. (1)

C. Datsikas, K. Peppas, N. Sagias, G. Tombras, "Serial free-space optical relaying communications over gamma-gamma atmospheric turbulence channels," IEEE/OSA J. Opt. Commun. Netw. 2, 576-586 (2010).

J. Appl. Opt. (1)

J. A. Anguita, M. A. Neifeld, B. V. Vasic, "Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link," J. Appl. Opt. 46, 6561-6571 (2007).

J. Lightw. Technol. (1)

S. Norimatsu, M. Maruoka, "Accurate $Q$-factor estimation of optically amplified systems in the presence of waveform distortion," J. Lightw. Technol. 20, 19-27 (2002).

Other (13)

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, N. C. Sagias, "Multihop free-space optical communications over turbulence channels," Proc. IEEE Int. Conf. Commun., 2006 (ICC'06) (2006) pp. 2755-2759.

fSONA Optical Wireless. http://www.fsona.com.

MRV Optical Communication Systems™ http://www.mrv.com.

L. C. Andrews, R. L. Philips, Laser Beam Propagation Through Random Media (SPIE, 2005).

G. P. Agrawal, Fiber Optic Communication Systems (Wiley, 2002).

J. W. Goodman, Statistical Optics (Wiley-Interscience, 2000).

R. M. Gagliardi, S. Karp, Optical Communications (Wiley, 1995).

H. Willebrand, B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Todays Networks (Sams Publishing, 2002).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).

H. Willebrand, B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Todays Networks (Sams Publishing, 2002).

S. Karp, R. M. Gagliardi, Optical Channels (Plenum Press, 1988).

S. Kazemlou, All-optical multihop free-space optical communication systems M.S. thesis McMaster Univ.HamiltonONCA (2010).

P. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," Proc, 24th Eur. Conf. Opt. Commun. (1998) pp. 475-476.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.