Abstract

From Huygens-Fresnel integral in cylindrical coordinates and by conveniently choosing the phase function from energy considerations, we demonstrate the possibility of approximately achieving and almost freely chosen longitudinal intensity profile along the optical axis for Free Space Optics (FSO) using a simple theory. These phase functions represent optical elements that could be coupled to the transmitter and, in the case of this work, it is shown that axicons and gradient-index (GRIN) axicons, which are commercially available and cost-effective, can be easily designed for applications in FSO systems to overcome diffraction and possible atmospheric attenuations, to increase the link distance or to diminish the power emitted.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Aruga, "Generation of long-range nondiffracting narrow light beams," Appl. Opt. 36, 3762-3768 (1997).
  2. T. Aruga, S. W. Li, "Super high resolution for long-range imaging," Appl. Opt. 38, 2795-2799 (1999).
  3. T. Aruga, "Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation," Appl. Opt. 38, 3152-3156 (1999).
  4. J. H. McLeod, "The axicon: A new type of optical element," J. Opt. Soc. Am. 44, 592-597 (1954).
  5. I. Golub, T. Mirtchev, "Absorption-free beam generated by a phase-engineered optical element," Opt. Lett. 34, 1528-1530 (2009).
  6. M. Zamboni-Rached, "Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen waves," Opt. Exp. 12, 4001-4006 (2004).
  7. M. Zamboni-Rached, H. E. Hernández-Figueroa, E. Recami, "Theory of Frozen Waves: Modeling the shape of stationary wave fields," J. Opt. Soc. Amer. A 22, 2465-2475 (2005).
  8. M. Zamboni-Rached, L. A. Ambrosio e, H. E. Hernández-Figueroa, "Finite aperture realization of the diffraction-attenuation resistant beams in absorbing media," The 2007 Int. Microwave and Optoelectronics Conf. SalvadorBABrasil.
  9. M. Zamboni-Rached, "Diffraction-attenuation resistant beams in absorbing media," Opt. Exp. 14, 1804-1809 (2006).
  10. M. Zamboni-Rached, L. A. Ambrosio, H. E. Henrández-Figueroa, "Diffraction-attenuation resistant beams: Their higher-order versions and finite-aperture generations," Appl. Opt. 49, 5861-5869 (2010).
  11. E. E. García-Guerrero, E. R. Méndez, H. M. Escamilla, "Design and fabrication of random phase diffusers for extending the depth of focus," Opt. Exp. 15, 910-923 (2007).
  12. D. J. Fischer, C. J. Harkrider, D. T. Moore, "Design and manufacture of a gradient-index axicon," Appl. Opt. 39, 2687-2694 (2000).
  13. J. Goodman, Introduction do Fourier Optics (McGraw-Hill, 1996).
  14. J. Sochaki, A. Kolodziejczyk, Z. Jaroszewicz, S. Bará, "Nonparaxial design of generalized axicons," Appl. Opt. 31, 5326-5330 (1992).
  15. Y. Zhang, G. Wang, "Slant path average intensity of finite optical beam propagating in turbulent atmosphere," Chin. Opt. Lett. 4, 559-562 (2006).
  16. X. Zhu, J. M. Kahn, "Free-space optical communication through atmospheric turbulance channels," IEEE Trans. Commun. 50, 1293-1300 (2002).
  17. Y. Jun, F. Dian-Yuan, W. Shi-Ji, G. Yuan, "Generalized Fresnel diffraction integral and its applications," Chin. Phys. 9, 119-123 (2000).
  18. J. Sochaki, Z. Jaroszewicz, L. R. Staronski, A. Kolodziejczyk, "Annular-aperture logarithmic axicon," J. Opt. Soc. Amer. A 10, 1765-1768 (1993).
  19. Z. Jaroszewicz, J. Sochaki, A. Kolodziejczyk, L. R. Staronski, "Apodized annular-aperture logarithmic axicon: Smoothness and uniformity of intensity distributions," Opt. Lett. 18, 1893-1895 (1993).
  20. Z. Bouchal, J. Wagner, M. Chlup, "Self-reconstruction of a distorted nondiffracting beam," Opt. Commun. 151, 207-211 (1998).
  21. L. R. Staronski, J. Sochacki, Z. Jaroszewicz, A. Kolodziejczyk, "Lateral distribution and flow of energy in uniform-intensity axicons," J. Opt. Soc. Amer. A 9, 2091-2094 (1992).

2010 (1)

2009 (1)

2007 (1)

E. E. García-Guerrero, E. R. Méndez, H. M. Escamilla, "Design and fabrication of random phase diffusers for extending the depth of focus," Opt. Exp. 15, 910-923 (2007).

2006 (2)

Y. Zhang, G. Wang, "Slant path average intensity of finite optical beam propagating in turbulent atmosphere," Chin. Opt. Lett. 4, 559-562 (2006).

M. Zamboni-Rached, "Diffraction-attenuation resistant beams in absorbing media," Opt. Exp. 14, 1804-1809 (2006).

2005 (1)

M. Zamboni-Rached, H. E. Hernández-Figueroa, E. Recami, "Theory of Frozen Waves: Modeling the shape of stationary wave fields," J. Opt. Soc. Amer. A 22, 2465-2475 (2005).

2004 (1)

M. Zamboni-Rached, "Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen waves," Opt. Exp. 12, 4001-4006 (2004).

2002 (1)

X. Zhu, J. M. Kahn, "Free-space optical communication through atmospheric turbulance channels," IEEE Trans. Commun. 50, 1293-1300 (2002).

2000 (2)

Y. Jun, F. Dian-Yuan, W. Shi-Ji, G. Yuan, "Generalized Fresnel diffraction integral and its applications," Chin. Phys. 9, 119-123 (2000).

D. J. Fischer, C. J. Harkrider, D. T. Moore, "Design and manufacture of a gradient-index axicon," Appl. Opt. 39, 2687-2694 (2000).

1999 (2)

1998 (1)

Z. Bouchal, J. Wagner, M. Chlup, "Self-reconstruction of a distorted nondiffracting beam," Opt. Commun. 151, 207-211 (1998).

1997 (1)

1993 (2)

J. Sochaki, Z. Jaroszewicz, L. R. Staronski, A. Kolodziejczyk, "Annular-aperture logarithmic axicon," J. Opt. Soc. Amer. A 10, 1765-1768 (1993).

Z. Jaroszewicz, J. Sochaki, A. Kolodziejczyk, L. R. Staronski, "Apodized annular-aperture logarithmic axicon: Smoothness and uniformity of intensity distributions," Opt. Lett. 18, 1893-1895 (1993).

1992 (2)

L. R. Staronski, J. Sochacki, Z. Jaroszewicz, A. Kolodziejczyk, "Lateral distribution and flow of energy in uniform-intensity axicons," J. Opt. Soc. Amer. A 9, 2091-2094 (1992).

J. Sochaki, A. Kolodziejczyk, Z. Jaroszewicz, S. Bará, "Nonparaxial design of generalized axicons," Appl. Opt. 31, 5326-5330 (1992).

1954 (1)

Appl. Opt. (6)

Chin. Opt. Lett. (1)

Chin. Phys. (1)

Y. Jun, F. Dian-Yuan, W. Shi-Ji, G. Yuan, "Generalized Fresnel diffraction integral and its applications," Chin. Phys. 9, 119-123 (2000).

IEEE Trans. Commun. (1)

X. Zhu, J. M. Kahn, "Free-space optical communication through atmospheric turbulance channels," IEEE Trans. Commun. 50, 1293-1300 (2002).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Amer. A (3)

M. Zamboni-Rached, H. E. Hernández-Figueroa, E. Recami, "Theory of Frozen Waves: Modeling the shape of stationary wave fields," J. Opt. Soc. Amer. A 22, 2465-2475 (2005).

J. Sochaki, Z. Jaroszewicz, L. R. Staronski, A. Kolodziejczyk, "Annular-aperture logarithmic axicon," J. Opt. Soc. Amer. A 10, 1765-1768 (1993).

L. R. Staronski, J. Sochacki, Z. Jaroszewicz, A. Kolodziejczyk, "Lateral distribution and flow of energy in uniform-intensity axicons," J. Opt. Soc. Amer. A 9, 2091-2094 (1992).

Opt. Commun. (1)

Z. Bouchal, J. Wagner, M. Chlup, "Self-reconstruction of a distorted nondiffracting beam," Opt. Commun. 151, 207-211 (1998).

Opt. Exp. (3)

E. E. García-Guerrero, E. R. Méndez, H. M. Escamilla, "Design and fabrication of random phase diffusers for extending the depth of focus," Opt. Exp. 15, 910-923 (2007).

M. Zamboni-Rached, "Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen waves," Opt. Exp. 12, 4001-4006 (2004).

M. Zamboni-Rached, "Diffraction-attenuation resistant beams in absorbing media," Opt. Exp. 14, 1804-1809 (2006).

Opt. Lett. (2)

Other (2)

J. Goodman, Introduction do Fourier Optics (McGraw-Hill, 1996).

M. Zamboni-Rached, L. A. Ambrosio e, H. E. Hernández-Figueroa, "Finite aperture realization of the diffraction-attenuation resistant beams in absorbing media," The 2007 Int. Microwave and Optoelectronics Conf. SalvadorBABrasil.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.