Abstract

In this paper, the influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance (SPR) refractive index (RI) sensors is investigated. The loss of surface plasmon polarition (SPP) mode plays a key role in the design and implementation of such sensors. It is demonstrated through simulation that the grating length should be smaller than or comparable with the propagation length of SPP mode in order to achieve effective coupling. The loss of SPP mode is the severe limiting factor for the implementation of the grating-assisted SPR-RI sensors. More generally, in order to achieve effective mode coupling with the help of waveguide grating, the grating length is bounded by the shortest propagation length of the modes in lossy waveguides.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. Y.-J. He, Y.-L. Lo, J.-F. Huang, "Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing," J. Opt. Soc. Amer. B, Opt. Phys. 23, 801-811 (2006) http://josab.osa.org/abstract.cfm?URI=josab-23-5-801.
  2. G. Nemova, R. Kashyap, "Fiber-Bragg-grating-assisted surface plasmon-polariton sensor," Opt. Lett. 31, 2118-2120 (2006) http://ol.osa.org/abstract.cfm?URI=ol-31-14-2118.
  3. G. Nemova, R. Kashyap, "Modeling of plasmon-polariton refractive-index hollow core fiber sensors assisted by a fiber bragg grating," J. Lightw. Technol. 24, 3789-3796 (2006).
  4. G. Nemova, R. Kashyap, "Novel fiber bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors," J. Mater. Sci.—Mater. Electron. 18, 327-330 (2007) http://dx.doi.org/10.1007/s10854-007-9212-x.
  5. Y. Y. Shevchenko, J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett. 32, 211-213 (2007) http://ol.osa.org/abstract.cfm?URI=ol-32-3-211.
  6. G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Amer. B, Opt. Phys. 24, 2696-2701 (2007) http://josab.osa.org/abstract.cfm?URI=josab-24-10-2696.
  7. G. Nemova, R. Kashyap, "A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating," J. Lightw. Technol. 25, 2244-2250 (2007).
  8. G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82 (2007) http://www.sciencedirect.com/science/article/B6TVF-4NHD78K-1/2/46bb2a2b5ddc6a1516bfe02af688e3e7.
  9. G. Nemova, A. V. Kabashin, R. Kashyap, "Surface plasmon-polariton mach-zehnder refractive index sensor," J. Opt. Soc. Amer. B, Opt. Phys. 25, 1673-1677 (2008) http://josab.osa.org/abstract.cfm?URI=josab-25-10-1673.
  10. A. D. Rakic, A. B. Djuri?ic, J. M. Elazar, M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
  11. L. Li, "Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity," J. Opt. Soc. Amer. A, Opt. Image Sci. 10, 2581-2591 (1993).
  12. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Amer. A, Opt. Image Sci. 13, 1024-1035 (1996).
  13. Y.-C. Lu, L. Yang, W.-P. Huang, S.-S. Jian, "Unified approach for coupling to cladding and radiation modes in fiber bragg and long-period gratings," J. Lightw. Technol. 27, 1461-1468 (2009).
  14. T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15, 1277-1294 (1997).
  15. Y.-C. Lu, L. Yang, W.-P. Huang, S.-S. Jian, "Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry," J. Lightw. Technol. 26, 1868-1876 (2008).

2009 (1)

Y.-C. Lu, L. Yang, W.-P. Huang, S.-S. Jian, "Unified approach for coupling to cladding and radiation modes in fiber bragg and long-period gratings," J. Lightw. Technol. 27, 1461-1468 (2009).

2008 (2)

Y.-C. Lu, L. Yang, W.-P. Huang, S.-S. Jian, "Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry," J. Lightw. Technol. 26, 1868-1876 (2008).

G. Nemova, A. V. Kabashin, R. Kashyap, "Surface plasmon-polariton mach-zehnder refractive index sensor," J. Opt. Soc. Amer. B, Opt. Phys. 25, 1673-1677 (2008) http://josab.osa.org/abstract.cfm?URI=josab-25-10-1673.

2007 (5)

G. Nemova, R. Kashyap, "Novel fiber bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors," J. Mater. Sci.—Mater. Electron. 18, 327-330 (2007) http://dx.doi.org/10.1007/s10854-007-9212-x.

G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Amer. B, Opt. Phys. 24, 2696-2701 (2007) http://josab.osa.org/abstract.cfm?URI=josab-24-10-2696.

G. Nemova, R. Kashyap, "A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating," J. Lightw. Technol. 25, 2244-2250 (2007).

G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82 (2007) http://www.sciencedirect.com/science/article/B6TVF-4NHD78K-1/2/46bb2a2b5ddc6a1516bfe02af688e3e7.

Y. Y. Shevchenko, J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett. 32, 211-213 (2007) http://ol.osa.org/abstract.cfm?URI=ol-32-3-211.

2006 (3)

G. Nemova, R. Kashyap, "Fiber-Bragg-grating-assisted surface plasmon-polariton sensor," Opt. Lett. 31, 2118-2120 (2006) http://ol.osa.org/abstract.cfm?URI=ol-31-14-2118.

Y.-J. He, Y.-L. Lo, J.-F. Huang, "Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing," J. Opt. Soc. Amer. B, Opt. Phys. 23, 801-811 (2006) http://josab.osa.org/abstract.cfm?URI=josab-23-5-801.

G. Nemova, R. Kashyap, "Modeling of plasmon-polariton refractive-index hollow core fiber sensors assisted by a fiber bragg grating," J. Lightw. Technol. 24, 3789-3796 (2006).

1998 (1)

1997 (1)

T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15, 1277-1294 (1997).

1996 (1)

L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Amer. A, Opt. Image Sci. 13, 1024-1035 (1996).

1993 (1)

L. Li, "Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity," J. Opt. Soc. Amer. A, Opt. Image Sci. 10, 2581-2591 (1993).

Appl. Opt. (1)

J. Lightw. Technol. (5)

Y.-C. Lu, L. Yang, W.-P. Huang, S.-S. Jian, "Unified approach for coupling to cladding and radiation modes in fiber bragg and long-period gratings," J. Lightw. Technol. 27, 1461-1468 (2009).

T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15, 1277-1294 (1997).

Y.-C. Lu, L. Yang, W.-P. Huang, S.-S. Jian, "Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry," J. Lightw. Technol. 26, 1868-1876 (2008).

G. Nemova, R. Kashyap, "Modeling of plasmon-polariton refractive-index hollow core fiber sensors assisted by a fiber bragg grating," J. Lightw. Technol. 24, 3789-3796 (2006).

G. Nemova, R. Kashyap, "A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating," J. Lightw. Technol. 25, 2244-2250 (2007).

J. Mater. Sci.—Mater. Electron. (1)

G. Nemova, R. Kashyap, "Novel fiber bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors," J. Mater. Sci.—Mater. Electron. 18, 327-330 (2007) http://dx.doi.org/10.1007/s10854-007-9212-x.

J. Opt. Soc. Amer. A, Opt. Image Sci. (2)

L. Li, "Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity," J. Opt. Soc. Amer. A, Opt. Image Sci. 10, 2581-2591 (1993).

L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Amer. A, Opt. Image Sci. 13, 1024-1035 (1996).

J. Opt. Soc. Amer. B, Opt. Phys. (3)

Y.-J. He, Y.-L. Lo, J.-F. Huang, "Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing," J. Opt. Soc. Amer. B, Opt. Phys. 23, 801-811 (2006) http://josab.osa.org/abstract.cfm?URI=josab-23-5-801.

G. Nemova, A. V. Kabashin, R. Kashyap, "Surface plasmon-polariton mach-zehnder refractive index sensor," J. Opt. Soc. Amer. B, Opt. Phys. 25, 1673-1677 (2008) http://josab.osa.org/abstract.cfm?URI=josab-25-10-1673.

G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Amer. B, Opt. Phys. 24, 2696-2701 (2007) http://josab.osa.org/abstract.cfm?URI=josab-24-10-2696.

Opt. Commun. (1)

G. Nemova, R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82 (2007) http://www.sciencedirect.com/science/article/B6TVF-4NHD78K-1/2/46bb2a2b5ddc6a1516bfe02af688e3e7.

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.