Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 15,
  • pp. 3303-3313
  • (2009)

Integrated Silicon PIN Photodiodes Using Deep N-Well in a Standard 0.18-$\mu$m CMOS Technology

Not Accessible

Your library or personal account may give you access

Abstract

This paper studies integrated silicon photodiodes (PDs) implemented in standard CMOS technologies. A new PIN PD structure utilizing deep n-well is presented, and compared with conventional vertical and lateral PIN PDs at 850-nm wavelength and different bias conditions. Prototype PDs were fabricated in a 0.18-$\mu$m standard CMOS technology, and their DC, impulse and frequency responses were characterized. A 70$\,\times\,$70 $\mu$m$^2$ PD with the new structure achieved a 3-dB bandwidth of 2.2 GHz in small signal at 5-V bias, whereas conventional lateral and vertical PIN PDs could only operate up to 0.94 GHz and 1.15 GHz, respectively. At 5-V bias, the impulse response of the new PD exhibited a full-width at half-maximum pulsewidth of 127 ps, versus 175 and 150 ps for the conventional lateral and vertical ones, respectively. At 15.5-V bias, the bandwidth of this new PD reached 3.13 GHz, with an impulse response pulsewidth of 102 ps. The responsivity of all prototype PDs was measured at approximately 0.14 A/W up to 10-V bias, which corresponded to a quantum efficiency of 20%. The responsivity of the new PD could be further increased to 0.4 A/W or 58% quantum efficiency, when operating in the avalanche region at 16.2-V bias.

© 2009 IEEE

PDF Article
More Like This
High speed photodiodes in standard nanometer scale CMOS technology: a comparative study

Behrooz Nakhkoob, Sagar Ray, and Mona M. Hella
Opt. Express 20(10) 11256-11270 (2012)

High-speed grating-assisted all-silicon photodetectors for 850 nm applications

Monireh Moayedi Pour Fard, Christopher Williams, Glenn Cowan, and Odile Liboiron-Ladouceur
Opt. Express 25(5) 5107-5118 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.