Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 10,
  • pp. 3114-3125
  • (2007)

Tunable Diode-Laser Spectroscopy With Wavelength Modulation: A Calibration-Free Approach to the Recovery of Absolute Gas Absorption Line Shapes

Not Accessible

Your library or personal account may give you access

Abstract

The principles and implementation of an alternative approach to tunable diode-laser spectroscopy with wavelength modulation are described. This new technique uses the inherent phase shift between diode-laser power modulation and frequency modulation to separate the residual amplitude modulation and the first derivative signals recovered at the fundamental modulation frequency. The technique, through analysis of the residual-amplitude-modulation signal, is absolute, yielding gas-absorption-line-shape functions, concentrations, and pressures without the need for calibration under certain defined operating conditions. It offers the simplicity of signal analysis of direct detection while providing all the advantages of phase-sensitive electronic detection. Measurements of the 1650.96-nm rotation/vibration-absorption-line-shape function for 1% and 10% methane in nitrogen at various pressures are compared to theoretical predictions derived from HITRAN data, and the excellent agreement confirms the validity of the new technique. Further measurements of concentration and pressure confirm the efficacy of the technique for determining concentration in industrial-process environments where the pressure may be unknown and changing. An analysis of signal strength demonstrates that sensitivity comparable to that of conventional approaches is achievable. The new approach is simpler and more robust in coping with unknown pressure variations and drift in instrumentation parameters (such as laser characteristics) than the conventional approach. As such, it is better suited to stand-alone instrumentation for online deployment in industrial processes and is particularly useful in high-temperature applications, where the background infrared is strong.

© 2007 IEEE

PDF Article
More Like This
Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line

Arup Lal Chakraborty, Keith Ruxton, Walter Johnstone, Michael Lengden, and Kevin Duffin
Opt. Express 17(12) 9602-9607 (2009)

Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases

Hejie Li, Gregory B. Rieker, Xiang Liu, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 45(5) 1052-1061 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved