Abstract

An effective tool for accurate analysis and design of a wide range of optical devices involving three-dimensional (3-D) photonic crystals is provided. The advantages of using transverse resonance in conjunction with full-wave numerical solvers in order to characterize this kind of structures are highlighted. This paper focuses on the study of a practical example of an asymmetric crystal slab and shows the features of the proposed method in terms of accuracy and flexibility. The concept of Floquet modes of a periodic crystal is applied, and a multimode transverse equivalent network is developed in the aim of obtaining the resonant 3-D modes of the slab containing the photonic crystal.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejsky, "Guided modes in photonic crystal slabs," Phys. Rev. B, Condens. Matter 60, 5751-5758 (1999 II).
  2. L. C. Andreani, M. Agio, "Photonic bands and gap maps in a photonic crystal slab," IEEE J. Quantum Electron. 38, 891-898 (2002).
  3. H.-Y. Ryu, J.-K. Hwang, Y.-H. Lee, "The smallest possible whispering-gallery-like mode in the square lattice photonic-crystal slab single defect-cavity," IEEE J. Quantum Electron. 39, 314-322 (2003).
  4. R. Coccioli, M. Borodisky, K. W. Kim, Y. Rahmat-Samii, E. Yablonovitch, "The smallest possible electromagnetic mode in a dielectric cavity," Proc. Inst. Electr. Eng.—Optoelectron.,Photonic Crystals and Microstructures 145, 391-397 (1998).
  5. S. Kim, G. P. Nordin, J. Jiang, J. Cai, "High efficiency 90$^{\circ}$ silica waveguide bend using an air hole photonic crystal region," IEEE Photon. Technol. Lett. 16, 1846-1848 (2004).
  6. E. P. Kosmidou, E. E. Kriezis, T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
  7. H.-Y. Ryu, J.-K. Hwang, Y.-J. Lee, Y.-H. Lee, "Enhancement of light extraction from two-dimensional photonics crystal slab structures," IEEE J. Sel. Topics Quantum Electron. 8, 231-237 (2002).
  8. S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
  9. C. Ciminelli, F. Peluso, M. N. Armenise, "Modeling and design of two-dimensional guided-wave photonic band-gap devices," J. Lightw. Technol. 23, 886-901 (2005).

IEEE J. Quantum Electron. (4)

L. C. Andreani, M. Agio, "Photonic bands and gap maps in a photonic crystal slab," IEEE J. Quantum Electron. 38, 891-898 (2002).

H.-Y. Ryu, J.-K. Hwang, Y.-H. Lee, "The smallest possible whispering-gallery-like mode in the square lattice photonic-crystal slab single defect-cavity," IEEE J. Quantum Electron. 39, 314-322 (2003).

E. P. Kosmidou, E. E. Kriezis, T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).

IEEE J. Sel. Topics Quantum Electron. (1)

H.-Y. Ryu, J.-K. Hwang, Y.-J. Lee, Y.-H. Lee, "Enhancement of light extraction from two-dimensional photonics crystal slab structures," IEEE J. Sel. Topics Quantum Electron. 8, 231-237 (2002).

IEEE Photon. Technol. Lett. (1)

S. Kim, G. P. Nordin, J. Jiang, J. Cai, "High efficiency 90$^{\circ}$ silica waveguide bend using an air hole photonic crystal region," IEEE Photon. Technol. Lett. 16, 1846-1848 (2004).

J. Lightw. Technol. (1)

C. Ciminelli, F. Peluso, M. N. Armenise, "Modeling and design of two-dimensional guided-wave photonic band-gap devices," J. Lightw. Technol. 23, 886-901 (2005).

Phys. Rev. B, Condens. Matter (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejsky, "Guided modes in photonic crystal slabs," Phys. Rev. B, Condens. Matter 60, 5751-5758 (1999 II).

Proc. Inst. Electr. Eng.—Optoelectron.,Photonic Crystals and Microstructures (1)

R. Coccioli, M. Borodisky, K. W. Kim, Y. Rahmat-Samii, E. Yablonovitch, "The smallest possible electromagnetic mode in a dielectric cavity," Proc. Inst. Electr. Eng.—Optoelectron.,Photonic Crystals and Microstructures 145, 391-397 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.