Abstract

Profile development during the isothermal drawing of the hollow all-polymer Bragg fibers is studied in the case when surface tension is strong enough to cause a hole collapse. The viscoelastic model of polymer flow is considered, and a comparison with the simpler Newtonian and generalized Newtonian models is made. The effects of draw ratio, draw temperature, feeding speed, core pressurization, and mismatch of material properties in the multilayer structure are investigated. A relation between the hole collapse and the layers nonuniformity is presented, and their effect on the fiber-transmission properties is investigated.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription