Abstract

A novel approach for an optical direct-sequence spread spectrum is presented. It is based on the complementary processes of broad-band parametric down-conversion and up-conversion. With parametric down-conversion, a narrow-band continuous-wave (CW) optical field is transformed into two CW broad-band white-noise fields that are complex conjugates of each other. These noise fields are exploited as the key and conjugate key in optical direct-sequence spread spectrum. The inverse process of parametric up-conversion is then used for multiplying the key by the conjugate key at the receiver in order to extract the transmitted data. A complete scheme for optical code-division multiple access (OCDMA) based on this approach is presented. The salient feature of the approach presented in this paper is that an ideal white-noise key is automatically generated,leading to high-capacity versatile code-division multiple-access configurations.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription