Abstract

We present a compact integrated fiber laser with more than 200 mW of output power. It combines polarized fiber output with very narrow linewidth of less than 2 kHz. The coherence length of the laser is measured to be longer than 5 km. The laser features high mode stability of less than ±10 MHz over hours. The relative intensity noise (RIN) spectrum is dominated by a peak at the relaxation oscillation frequency and is shot-noise limited otherwise. The RIN peak at 1 MHz is reduced to ~ -130 dB/Hz by integrating a negative feedback circuit. In addition to thermal wavelength tuning, the laser frequency can be modulated at a bandwidth of up to 10 kHz via the piezoelectric effect.

© 2004 IEEE

PDF Article

References

  • View by:
  • |

  1. G. A. Ball, W. W. Morey and W. H. Glenn, "Standing-wave monomode erbium fiber laser", IEEE Photon. Technol. Lett., vol. 3, pp. 613-615, 1991.
  2. J. L. Zyskind, V. Mizahri, D. J. DiGiovanni and J. W. Sulhoff, "Short single frequency erbium-doped fiber laser", Electron. Lett., vol. 28, no. 15, p. 1385, 1992.
  3. M. Sejka, P. Varming, J. Hübner and M. Kristensen, "Distributed feedback Er3+-doped fiber laser", Electron. Lett., vol. 31, no. 17, p. 1445, 1995.
  4. W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle and K. Hsu, "High performance single frequency fiber grating-based erbium: Ytterbium-codoped fiber lasers", J. Lightwave Technol., vol. 16, pp. 114-118, 1998.
  5. G. A. Ball, C. E. Holton, G. Ahull-Allen and W. W. Morey, "60 mW 1.5 µ m single-frequency low-noise fiber laser MOPA", IEEE. Photon. Technol. Lett., vol. 6, p. 192, 1994.
  6. G. Bonfrate, F. Vaninetti and F. Negrisolo, "Single-Frequency MOPA Er3+ DBR fiber laser for WDM digital telecommunication systems", IEEE Photon. Technol. Lett., vol. 10, p. 1109, 1998.
  7. J. J. Pan and Y. Shi, "166-mW Single-frequency output power interactive fiber lasers with low noise", IEEE Photon. Technol. Lett., vol. 11, no. 1, p. 36, 1999.
  8. G. A. Ball, C. G. Hull-Allen and J. Livas, "Frequency noise of a bragg grating fiber laser", Electron. Lett., vol. 30, no. 15, p. 1229, 1994.
  9. Y. Hu, S. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas and N. Peyghambarian, "Performance of high concentration Er3+ Yb3+-codoped phosphate fiber amplifiers", IEEE Photon. Technol. Lett., vol. 13, p. 657, 2001.
  10. C. Spiegelberg, J. Geng, Y. Hu, T. Luo, Y. Kaneda, J. Wang, W. Li, M. Brutsch, S. Hodce, M. Chen, J. Babico, K. Barry, W. Eaton, M. Blake, D. Eigen and S. Jiang, in"OFC 2003", 2003, post deadline paper PD45-1.
  11. E. M. Strzelecki, D. A. Cohen and L. A. Coldren, " investigation of tunable single frequency diode lasers for sensor applications", J. Lightwave Technol. , vol. 6, no. 10, p. 1610, 1988.
  12. S. A. Kingsley and D. E. N. Davies, "OFTDR diagnostics for fiber/integrated optic systems and high resolution distributed fiber optic sensing", in Fiber Optic and Laser Sensors III Conf. Proc., vol. 566, 1985, pp. 265-275.

J. Lightwave Technol. (1)

Other (11)

G. A. Ball, C. E. Holton, G. Ahull-Allen and W. W. Morey, "60 mW 1.5 µ m single-frequency low-noise fiber laser MOPA", IEEE. Photon. Technol. Lett., vol. 6, p. 192, 1994.

G. Bonfrate, F. Vaninetti and F. Negrisolo, "Single-Frequency MOPA Er3+ DBR fiber laser for WDM digital telecommunication systems", IEEE Photon. Technol. Lett., vol. 10, p. 1109, 1998.

J. J. Pan and Y. Shi, "166-mW Single-frequency output power interactive fiber lasers with low noise", IEEE Photon. Technol. Lett., vol. 11, no. 1, p. 36, 1999.

G. A. Ball, C. G. Hull-Allen and J. Livas, "Frequency noise of a bragg grating fiber laser", Electron. Lett., vol. 30, no. 15, p. 1229, 1994.

Y. Hu, S. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas and N. Peyghambarian, "Performance of high concentration Er3+ Yb3+-codoped phosphate fiber amplifiers", IEEE Photon. Technol. Lett., vol. 13, p. 657, 2001.

C. Spiegelberg, J. Geng, Y. Hu, T. Luo, Y. Kaneda, J. Wang, W. Li, M. Brutsch, S. Hodce, M. Chen, J. Babico, K. Barry, W. Eaton, M. Blake, D. Eigen and S. Jiang, in"OFC 2003", 2003, post deadline paper PD45-1.

E. M. Strzelecki, D. A. Cohen and L. A. Coldren, " investigation of tunable single frequency diode lasers for sensor applications", J. Lightwave Technol. , vol. 6, no. 10, p. 1610, 1988.

S. A. Kingsley and D. E. N. Davies, "OFTDR diagnostics for fiber/integrated optic systems and high resolution distributed fiber optic sensing", in Fiber Optic and Laser Sensors III Conf. Proc., vol. 566, 1985, pp. 265-275.

G. A. Ball, W. W. Morey and W. H. Glenn, "Standing-wave monomode erbium fiber laser", IEEE Photon. Technol. Lett., vol. 3, pp. 613-615, 1991.

J. L. Zyskind, V. Mizahri, D. J. DiGiovanni and J. W. Sulhoff, "Short single frequency erbium-doped fiber laser", Electron. Lett., vol. 28, no. 15, p. 1385, 1992.

M. Sejka, P. Varming, J. Hübner and M. Kristensen, "Distributed feedback Er3+-doped fiber laser", Electron. Lett., vol. 31, no. 17, p. 1445, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.