Abstract

This paper proposes a novel wavelength division multiplexer (WDM) demultiplexer design for dense WDM networks. The proposed demultiplexer consists of rectangular shaped periodic frequency filters connected in series. These rectangular filters can be formed with an apodized one-dimensional (1-D) photonic crystal structure on a ridged semiconductor waveguide. A design example is given for such filters. In such designs, we can use a moderate refractive index contrast, in discrete groups of many layers, to achieve the same stop-band width that we would get with a large contrast. Apart from being compact in size, to demultiplex an arbitrary wavelength from N wavelengths, only \log_2 N switches and filter stages are required. This type of filter has a large potential to be used in integrated photonic implementation and packet switched dense WDM applications.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription