Abstract

The effects of erbium anisotropy in erbium-doped fiber lasers, sources, and amplifiers are examined. Starting from basic ion properties, inversion and gain equations are derived analytically to describe polarization dependencies. A novel matrix form of the Er3+ rate equations is presented to propagate powers and polarization states. These equations are then numerically integrated and compared to experimentally observed polarization hole burning and polarization dependent gain. The theoretical predictions agree strongly with experiment in all cases.

© 1998 IEEE

PDF Article

References

  • View by:
  • |

  1. M. G. Taylor, "Observation of new polarization dependence effect in long haul optically amplified system," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 4, PD5-1, 1993.
  2. E. Lichtman, "Limitations imposed by polarization-dependent gain and loss an all-optical ultralong communication systems," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 4, 1994, pp. 257-258.
  3. V. J. Mazurczyk and J. L. Zyskind, "Polarization hole burning in erbium doped fiber amplifiers," in Tech. Dig. Series, Conf. Lasers and Electro-Optics, vol. 11, CPD26, 1993.
  4. V. J. Mazurczyk and J. L. Zyskind, "Polarization dependent gain in erbium doped-fiber amplifiers," IEEE Photon. Technol. Lett., vol. 6, pp. 616-618, 1994.
  5. R. W. Keys, S. J. Wilson, M. Healy, S. R. Baker, A. Robinson, and J. E. Righton, "Polarization-dependent gain in erbium-doped fibers," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 4, pp. 306-307. 1994.
  6. D. Falquier, D. Lande, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, "Measurements and modeling of the output polarization of Er-doped fiber lasers," in SPIE Proc. Doped Fiber Devices and Syst., vol. 2289, 1994, pp. 24-40.
  7. J. L. Wagener, M. J. F. Digonnet and H. J. Shaw, "A high-stability fiber amplifier source for the fiber optic gyroscope," J. Lightwave Technol., vol. 15, pp. 1689-1694, Sept. 1997.
  8. D. W. Hall and M. J. Weber, "Polarized fluorescence line narrowing measurements of Nd laser glass: Evidence of stimulated emission cross section anisotropy," Appl. Phys. Lett., vol. 42, p. 157, 1983.
  9. D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, "Spectral and polarization hole burning in neodymium glass lasers," IEEE J. Quantum Electron., vol. QE-19, p. 1704, 1983.
  10. P. F. Wysocki, "Computer modeling of polarization hole burning in EDFA's," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 4, 1994, pp. 307-308.
  11. R. Leners, P. L. Francois, and G. Stephan, "Simultaneous effects of gain and loss anisotropies on the thresholds of a bipolarization fiber laser," Opt. Lett. vol. 19, pp. 275-277, 1994.
  12. C. R. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightwave Technol. vol. 9, pp. 271-283, 1991.
  13. V. J. Mazurczyk, R. H. Stolen, Jau-Sheng Wang, and C. D. Poole, "Observation of polarization hole burning in Er-doped fiber for circular polarization of the saturating signal," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 8, 1995, pp. 49-50.
  14. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, "All-single-mode fiber-optic gyroscope," Opt. Lett. vol. 6, pp. 198-200, 1981.

J. Lightwave Technol.

J. L. Wagener, M. J. F. Digonnet and H. J. Shaw, "A high-stability fiber amplifier source for the fiber optic gyroscope," J. Lightwave Technol., vol. 15, pp. 1689-1694, Sept. 1997.

Other

D. W. Hall and M. J. Weber, "Polarized fluorescence line narrowing measurements of Nd laser glass: Evidence of stimulated emission cross section anisotropy," Appl. Phys. Lett., vol. 42, p. 157, 1983.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, "Spectral and polarization hole burning in neodymium glass lasers," IEEE J. Quantum Electron., vol. QE-19, p. 1704, 1983.

P. F. Wysocki, "Computer modeling of polarization hole burning in EDFA's," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 4, 1994, pp. 307-308.

R. Leners, P. L. Francois, and G. Stephan, "Simultaneous effects of gain and loss anisotropies on the thresholds of a bipolarization fiber laser," Opt. Lett. vol. 19, pp. 275-277, 1994.

C. R. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightwave Technol. vol. 9, pp. 271-283, 1991.

V. J. Mazurczyk, R. H. Stolen, Jau-Sheng Wang, and C. D. Poole, "Observation of polarization hole burning in Er-doped fiber for circular polarization of the saturating signal," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 8, 1995, pp. 49-50.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, "All-single-mode fiber-optic gyroscope," Opt. Lett. vol. 6, pp. 198-200, 1981.

M. G. Taylor, "Observation of new polarization dependence effect in long haul optically amplified system," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 4, PD5-1, 1993.

E. Lichtman, "Limitations imposed by polarization-dependent gain and loss an all-optical ultralong communication systems," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 4, 1994, pp. 257-258.

V. J. Mazurczyk and J. L. Zyskind, "Polarization hole burning in erbium doped fiber amplifiers," in Tech. Dig. Series, Conf. Lasers and Electro-Optics, vol. 11, CPD26, 1993.

V. J. Mazurczyk and J. L. Zyskind, "Polarization dependent gain in erbium doped-fiber amplifiers," IEEE Photon. Technol. Lett., vol. 6, pp. 616-618, 1994.

R. W. Keys, S. J. Wilson, M. Healy, S. R. Baker, A. Robinson, and J. E. Righton, "Polarization-dependent gain in erbium-doped fibers," in Tech. Dig. Series, Conf. Optic. Fiber Commun., vol. 4, pp. 306-307. 1994.

D. Falquier, D. Lande, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, "Measurements and modeling of the output polarization of Er-doped fiber lasers," in SPIE Proc. Doped Fiber Devices and Syst., vol. 2289, 1994, pp. 24-40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.