Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 16,
  • Issue 10,
  • pp. 1915-
  • (1998)

Stability and Numerical Dispersion of Symplectic Fourth-Order Time-Domain Schemes for Optical Field Simulation

Not Accessible

Your library or personal account may give you access

Abstract

The use of a more accurate scheme is effective in reducing the required memory resources in the explicit time-domain simulation of optical field propagation. A promising technique is the application of the symplectic integrator, which can simulate the long-term evolution of a Hamiltonian system accurately. The stability condition and the numerical dispersion of schemes with fourth-order accuracy in time and space using the symplectic integrator are derived for the transverse electric (TE)-mode in two dimensions. Their stable and accurate performance is qualitatively verified, and is also demonstrated by numerical simulations of wave-converging by a perfect electric conductor wall and propagation along a waveguide whose refractive index difference between the core and cladding is more than 9%.

[IEEE ]

PDF Article
More Like This
Application of the symplectic finite-difference time-domain method to light scattering by small particles

Peng-Wang Zhai, George W. Kattawar, Ping Yang, and Changhui Li
Appl. Opt. 44(9) 1650-1656 (2005)

Symplectic ray tracing based on Hamiltonian optics in gradient-index media

Hiroshi Ohno
J. Opt. Soc. Am. A 37(3) 411-416 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved