We demonstrate, for the first time to our knowledge, that a fast coherent collision between two Kerr spatial solitons can give rise to a significant phase shift for both interacting beams. The maximal collision-induced phase shift ∼ π rad takes place when the amplitudes of the solitons are equal (η1 = η2) and the length of the interaction zone is comparable with a soliton phase period. Depending on the ratio η2/ η1 and the collision angle between the solitons, the magnitude of the phase shift can be varied within a reasonable range, for example from 180° to 40° . The analysis of the effect performed by the finite-difference beam-propagation method has shown that it is insensitive to the initial phase difference between the incident beams (δi),even in the case when η1 != η2. It has been demonstrated that the phenomenon can be used for all-optical three-soliton logic elements, which are capable of providing more than 3-dB signal amplification and possess δi-independent output characteristics.


PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription