Abstract

We propose using power-over-fiber (PoF) in some part of future 5G cellular solutions based on radio access networks considering currently installed front-haul solutions with single mode fiber to optically power communication systems for 5G new radio (NR) data transmission. Simulations addressing design parameters are presented. Radio-over-fiber (RoF) transmission over single mode fiber (SMF) is experimentally implemented and tested for link lengths ranging from 100 m up to 10 km with injected PoF signals up to 2 W. 64QAM, 16QAM and QPSK data traffic of 100 MHz bandwidth are transmitted simultaneously with the PoF signal showing an EVM compliant with 5G NR standard, and up to 0.5 W for 256QAM. EVM of 4.3% is achieved with RF signal of 20 GHz and QPSK modulation format in coexistence with delivering 870 mW of optical power to a photovoltaic cell (PV) after 10 km-long SMF link. Using PoF technology to optically powering remote units and Internet-of-Things (IoT) solutions based on RoF links is also discussed.

PDF Article

References

  • View by:

  1. Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,’’ in Proc. J. Elect. Comput. Eng., 2016, Art. no. .
  2. M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” Proc. IEEE Photon. J., vol. 7, no. 1, pp. 1–9, 2015.
  3. G. Otero, “SDN-based multi-core power-over-fiber (PoF) system for 5G fronthaul: Towards PoF pooling,” in Proc. Eur. Conf. Opt. Commun., pp. 1–3, 2018.
  4. C. Vázquez, D. S. Montero, F. M. A. Al-Zubaidi, and J. D. López-Cardona, “Experiments on shared- and dedicated- power over fiber scenarios in multi-core fibers,” in Proc. Eur. Conf. Netw. Commun., Valencia, 2019, pp. 412–415.
  5. T. Umezawa, “Multi-core based 94-GHz radio and power over fiber transmission using 100-GHz analog photoreceiver,” in Proc. ECOC, 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.
  6. C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” in Proc. SPIE, 2017, Art. no. .
  7. J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, ‘‘Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,’’ IEEE Commun. Surv. Tut., vol. 17, no. 2, pp. 803–826, 2015.
  8. J. S. Wey and J. Zhang, “Passive optical networks for 5G evolution,” in Proc. SPIE Broadband Access Commun. Technol. XII 10559, California, United States, 2018, Art. no. .
  9. C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068, 2018.
  10. D. Konstantinou, A. Morales, S. Rommel, T. R. Raddo, U. Johannsen, and I. T. Monroy, “Analog radio over fiber fronthaul for high bandwidth 5G millimeter-wave carrier aggregated OFDM,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–4.
  11. D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.
  12. J. D. López-Cardona, C. Vázquez, D. S. Montero, and P. C. Lallana, “Remote optical powering using fiber optics in hazardous environments,” J. Lightw. Technol., vol. 36, no. 3, pp. 748–754, 2018.
  13. C. Vázquez, “Multicore fiber scenarios supporting power over fiber in radio over fiber systems,” IEEE Access, vol. 7, pp. 158409–158418, 2019.
  14. Base Station (BS) radio transmission and reception, Eur. Telecommun. Standards Inst., 2021. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.05.00_60/ts_138104v150500p.pdf
  15. “5G pan-european trials roadmap version 2.0,” 5G Infrastructure Assoc., 2021, [Online]. Available: https://5g-ppp.eu/wp-content/uploads//2017/05/5GInfraPPP_TrialsWG_Roadmap_Version2.0.pdf
  16. M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.
  17. G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G networks for the Internet of Things: Communication technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, Dec. 2017.
  18. “Superior indoor coverage with 5G radio dot,” Ericsson. 2021. [Online]. Available: https://www.ericsson.com/en/ran/indoor-coverage
  19. M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.
  20. “Connected stadiums,” Ericsson, 2021. [Online]. Available: https://www.ericsson.com/en/networks/offerings/urban-wireless/connected-stadium
  21. J. D. López-Cardona, D. Sánchez Montero, and C. Vázquez, “Smart remote nodes fed by power over fiber in Internet of Things applications,” IEEE Sensors J., vol. 19, no. 17, pp. 7328–7334, 2019.
  22. F. M. A. Al-Zubaidi, D. S. Montero, and C. Vázquez, “SI-POF supporting power-over-fiber in multi-Gbit/s transmission for in-home networks,” J. Lightw. Technol., vol. 39, no. 1, pp. 112–121, 2020.
  23. T. G. R. Miyanabe, Y. Lee, H. Nishiyama, and N. Kato, “An Internet of Things traffic-based power saving scheme in cloud-radio access network,” in IEEE Internet Things J., vol. 6, no. 2, pp. 3087–3096, 2019.
  24. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724, 1996.
  25. J. Nanni, J. Polleux, C. Algani, S. Rusticelli, F. Perini, and G. Tartarini, “VCSEL-based radio-over-g652 fiber system for short-/medium-range MFH solutions,” in J. Lightw. Technol., vol. 36, no. 19, pp. 4430–4437, 2018.
  26. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightw. Technol., vol. 22, no. 1, pp. 79–93, 2004.
  27. F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1473–1475, 1998.
  28. J. Toulouse, “Optical nonlinearities in fibers: Review, recent examples, and systems applications,” J. Lightw. Technol., vol. 23, no. 11, pp. 3625–3641, 2005.
  29. M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer,“Power transmission by optical fibers for component inherent communication,” J. Systemic, vol. 8, no. 1, pp. 55–60, 2010.
  30. X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.
  31. D. Phanish, “A wireless sensor network for monitoring the structural health of a football stadium,” in Proc. IEEE 2nd World Forum Internet Things, 2015, pp. 471–477.

2021 (1)

Base Station (BS) radio transmission and reception, Eur. Telecommun. Standards Inst., 2021. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.05.00_60/ts_138104v150500p.pdf

2020 (1)

F. M. A. Al-Zubaidi, D. S. Montero, and C. Vázquez, “SI-POF supporting power-over-fiber in multi-Gbit/s transmission for in-home networks,” J. Lightw. Technol., vol. 39, no. 1, pp. 112–121, 2020.

2019 (2)

J. D. López-Cardona, D. Sánchez Montero, and C. Vázquez, “Smart remote nodes fed by power over fiber in Internet of Things applications,” IEEE Sensors J., vol. 19, no. 17, pp. 7328–7334, 2019.

C. Vázquez, “Multicore fiber scenarios supporting power over fiber in radio over fiber systems,” IEEE Access, vol. 7, pp. 158409–158418, 2019.

2018 (2)

J. D. López-Cardona, C. Vázquez, D. S. Montero, and P. C. Lallana, “Remote optical powering using fiber optics in hazardous environments,” J. Lightw. Technol., vol. 36, no. 3, pp. 748–754, 2018.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068, 2018.

2017 (1)

G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G networks for the Internet of Things: Communication technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, Dec. 2017.

2016 (2)

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.

M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.

2015 (2)

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” Proc. IEEE Photon. J., vol. 7, no. 1, pp. 1–9, 2015.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, ‘‘Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,’’ IEEE Commun. Surv. Tut., vol. 17, no. 2, pp. 803–826, 2015.

2010 (2)

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer,“Power transmission by optical fibers for component inherent communication,” J. Systemic, vol. 8, no. 1, pp. 55–60, 2010.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

2008 (1)

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.

2005 (1)

J. Toulouse, “Optical nonlinearities in fibers: Review, recent examples, and systems applications,” J. Lightw. Technol., vol. 23, no. 11, pp. 3625–3641, 2005.

2004 (1)

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightw. Technol., vol. 22, no. 1, pp. 79–93, 2004.

1998 (1)

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1473–1475, 1998.

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724, 1996.

Abu-Mahfouz, A. M.

G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G networks for the Internet of Things: Communication technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, Dec. 2017.

Akpakwu, G. A.

G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G networks for the Internet of Things: Communication technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, Dec. 2017.

Algani, C.

J. Nanni, J. Polleux, C. Algani, S. Rusticelli, F. Perini, and G. Tartarini, “VCSEL-based radio-over-g652 fiber system for short-/medium-range MFH solutions,” in J. Lightw. Technol., vol. 36, no. 19, pp. 4430–4437, 2018.

Al-Zubaidi, F. M. A.

F. M. A. Al-Zubaidi, D. S. Montero, and C. Vázquez, “SI-POF supporting power-over-fiber in multi-Gbit/s transmission for in-home networks,” J. Lightw. Technol., vol. 39, no. 1, pp. 112–121, 2020.

C. Vázquez, D. S. Montero, F. M. A. Al-Zubaidi, and J. D. López-Cardona, “Experiments on shared- and dedicated- power over fiber scenarios in multi-core fibers,” in Proc. Eur. Conf. Netw. Commun., Valencia, 2019, pp. 412–415.

Benini, L.

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.

Bi, Y.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,’’ in Proc. J. Elect. Comput. Eng., 2016, Art. no. .

Bromage, J.

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightw. Technol., vol. 22, no. 1, pp. 79–93, 2004.

Contreras, P.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” in Proc. SPIE, 2017, Art. no. .

Dumke, M.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer,“Power transmission by optical fibers for component inherent communication,” J. Systemic, vol. 8, no. 1, pp. 55–60, 2010.

Farella, E.

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.

Fiorani, M.

M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.

Franke, S.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer,“Power transmission by optical fibers for component inherent communication,” J. Systemic, vol. 8, no. 1, pp. 55–60, 2010.

Fuster, J. M.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1473–1475, 1998.

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724, 1996.

Gomes, N. J.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.

Gottardi, M.

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.

Hancke, G. P.

G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G networks for the Internet of Things: Communication technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, Dec. 2017.

Heiserich, G.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer,“Power transmission by optical fibers for component inherent communication,” J. Systemic, vol. 8, no. 1, pp. 55–60, 2010.

Jayasundara, C.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068, 2018.

Jin, J.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,’’ in Proc. J. Elect. Comput. Eng., 2016, Art. no. .

Johannsen, U.

D. Konstantinou, A. Morales, S. Rommel, T. R. Raddo, U. Johannsen, and I. T. Monroy, “Analog radio over fiber fronthaul for high bandwidth 5G millimeter-wave carrier aggregated OFDM,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–4.

Kato, N.

T. G. R. Miyanabe, Y. Lee, H. Nishiyama, and N. Kato, “An Internet of Things traffic-based power saving scheme in cloud-radio access network,” in IEEE Internet Things J., vol. 6, no. 2, pp. 3087–3096, 2019.

Kazovsky, L. G.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,’’ in Proc. J. Elect. Comput. Eng., 2016, Art. no. .

Konstantinou, D.

D. Konstantinou, A. Morales, S. Rommel, T. R. Raddo, U. Johannsen, and I. T. Monroy, “Analog radio over fiber fronthaul for high bandwidth 5G millimeter-wave carrier aggregated OFDM,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–4.

Lallana, P. C.

J. D. López-Cardona, C. Vázquez, D. S. Montero, and P. C. Lallana, “Remote optical powering using fiber optics in hazardous environments,” J. Lightw. Technol., vol. 36, no. 3, pp. 748–754, 2018.

Lecca, M.

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.

Lee, Y.

T. G. R. Miyanabe, Y. Lee, H. Nishiyama, and N. Kato, “An Internet of Things traffic-based power saving scheme in cloud-radio access network,” in IEEE Internet Things J., vol. 6, no. 2, pp. 3087–3096, 2019.

Lethien, C.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.

Lim, C.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068, 2018.

López-Cardona, J. D.

J. D. López-Cardona, D. Sánchez Montero, and C. Vázquez, “Smart remote nodes fed by power over fiber in Internet of Things applications,” IEEE Sensors J., vol. 19, no. 17, pp. 7328–7334, 2019.

J. D. López-Cardona, C. Vázquez, D. S. Montero, and P. C. Lallana, “Remote optical powering using fiber optics in hazardous environments,” J. Lightw. Technol., vol. 36, no. 3, pp. 748–754, 2018.

C. Vázquez, D. S. Montero, F. M. A. Al-Zubaidi, and J. D. López-Cardona, “Experiments on shared- and dedicated- power over fiber scenarios in multi-core fibers,” in Proc. Eur. Conf. Netw. Commun., Valencia, 2019, pp. 412–415.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” in Proc. SPIE, 2017, Art. no. .

Martensson, J.

M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.

Marti, J.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1473–1475, 1998.

Matsuura, M.

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” Proc. IEEE Photon. J., vol. 7, no. 1, pp. 1–9, 2015.

Miyanabe, T. G. R.

T. G. R. Miyanabe, Y. Lee, H. Nishiyama, and N. Kato, “An Internet of Things traffic-based power saving scheme in cloud-radio access network,” in IEEE Internet Things J., vol. 6, no. 2, pp. 3087–3096, 2019.

Monroy, I. T.

D. Konstantinou, A. Morales, S. Rommel, T. R. Raddo, U. Johannsen, and I. T. Monroy, “Analog radio over fiber fronthaul for high bandwidth 5G millimeter-wave carrier aggregated OFDM,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–4.

Montero, D. S.

F. M. A. Al-Zubaidi, D. S. Montero, and C. Vázquez, “SI-POF supporting power-over-fiber in multi-Gbit/s transmission for in-home networks,” J. Lightw. Technol., vol. 39, no. 1, pp. 112–121, 2020.

J. D. López-Cardona, C. Vázquez, D. S. Montero, and P. C. Lallana, “Remote optical powering using fiber optics in hazardous environments,” J. Lightw. Technol., vol. 36, no. 3, pp. 748–754, 2018.

C. Vázquez, D. S. Montero, F. M. A. Al-Zubaidi, and J. D. López-Cardona, “Experiments on shared- and dedicated- power over fiber scenarios in multi-core fibers,” in Proc. Eur. Conf. Netw. Commun., Valencia, 2019, pp. 412–415.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” in Proc. SPIE, 2017, Art. no. .

Monti, P.

M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.

Morales, A.

D. Konstantinou, A. Morales, S. Rommel, T. R. Raddo, U. Johannsen, and I. T. Monroy, “Analog radio over fiber fronthaul for high bandwidth 5G millimeter-wave carrier aggregated OFDM,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–4.

Nanni, J.

J. Nanni, J. Polleux, C. Algani, S. Rusticelli, F. Perini, and G. Tartarini, “VCSEL-based radio-over-g652 fiber system for short-/medium-range MFH solutions,” in J. Lightw. Technol., vol. 36, no. 19, pp. 4430–4437, 2018.

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724, 1996.

Nirmalathas, A.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068, 2018.

Nishiyama, H.

T. G. R. Miyanabe, Y. Lee, H. Nishiyama, and N. Kato, “An Internet of Things traffic-based power saving scheme in cloud-radio access network,” in IEEE Internet Things J., vol. 6, no. 2, pp. 3087–3096, 2019.

Nkansah, A.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724, 1996.

Otero, G.

G. Otero, “SDN-based multi-core power-over-fiber (PoF) system for 5G fronthaul: Towards PoF pooling,” in Proc. Eur. Conf. Opt. Commun., pp. 1–3, 2018.

Overmeyer, L.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer,“Power transmission by optical fibers for component inherent communication,” J. Systemic, vol. 8, no. 1, pp. 55–60, 2010.

Perini, F.

J. Nanni, J. Polleux, C. Algani, S. Rusticelli, F. Perini, and G. Tartarini, “VCSEL-based radio-over-g652 fiber system for short-/medium-range MFH solutions,” in J. Lightw. Technol., vol. 36, no. 19, pp. 4430–4437, 2018.

Phanish, D.

D. Phanish, “A wireless sensor network for monitoring the structural health of a football stadium,” in Proc. IEEE 2nd World Forum Internet Things, 2015, pp. 471–477.

Pinzón, P. J.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” in Proc. SPIE, 2017, Art. no. .

Polleux, J.

J. Nanni, J. Polleux, C. Algani, S. Rusticelli, F. Perini, and G. Tartarini, “VCSEL-based radio-over-g652 fiber system for short-/medium-range MFH solutions,” in J. Lightw. Technol., vol. 36, no. 19, pp. 4430–4437, 2018.

Polo, V.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1473–1475, 1998.

Raddo, T. R.

D. Konstantinou, A. Morales, S. Rommel, T. R. Raddo, U. Johannsen, and I. T. Monroy, “Analog radio over fiber fronthaul for high bandwidth 5G millimeter-wave carrier aggregated OFDM,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–4.

Ramos, F.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1473–1475, 1998.

Ranaweera, C.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068, 2018.

Rommel, S.

D. Konstantinou, A. Morales, S. Rommel, T. R. Raddo, U. Johannsen, and I. T. Monroy, “Analog radio over fiber fronthaul for high bandwidth 5G millimeter-wave carrier aggregated OFDM,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–4.

Rossi, D.

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.

Rusci, M.

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.

Rusticelli, S.

J. Nanni, J. Polleux, C. Algani, S. Rusticelli, F. Perini, and G. Tartarini, “VCSEL-based radio-over-g652 fiber system for short-/medium-range MFH solutions,” in J. Lightw. Technol., vol. 36, no. 19, pp. 4430–4437, 2018.

Sánchez Montero, D.

J. D. López-Cardona, D. Sánchez Montero, and C. Vázquez, “Smart remote nodes fed by power over fiber in Internet of Things applications,” IEEE Sensors J., vol. 19, no. 17, pp. 7328–7334, 2019.

Sato, J.

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” Proc. IEEE Photon. J., vol. 7, no. 1, pp. 1–9, 2015.

Schulz, L.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer,“Power transmission by optical fibers for component inherent communication,” J. Systemic, vol. 8, no. 1, pp. 55–60, 2010.

Shen, S.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,’’ in Proc. J. Elect. Comput. Eng., 2016, Art. no. .

Silva, B. J.

G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G networks for the Internet of Things: Communication technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, Dec. 2017.

Sion, C.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.

Skubic, B.

M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.

Tapetado, A.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” in Proc. SPIE, 2017, Art. no. .

Tartarini, G.

J. Nanni, J. Polleux, C. Algani, S. Rusticelli, F. Perini, and G. Tartarini, “VCSEL-based radio-over-g652 fiber system for short-/medium-range MFH solutions,” in J. Lightw. Technol., vol. 36, no. 19, pp. 4430–4437, 2018.

Tombaz, S.

M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.

Toulouse, J.

J. Toulouse, “Optical nonlinearities in fibers: Review, recent examples, and systems applications,” J. Lightw. Technol., vol. 23, no. 11, pp. 3625–3641, 2005.

Umezawa, T.

T. Umezawa, “Multi-core based 94-GHz radio and power over fiber transmission using 100-GHz analog photoreceiver,” in Proc. ECOC, 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Vázquez, C.

F. M. A. Al-Zubaidi, D. S. Montero, and C. Vázquez, “SI-POF supporting power-over-fiber in multi-Gbit/s transmission for in-home networks,” J. Lightw. Technol., vol. 39, no. 1, pp. 112–121, 2020.

J. D. López-Cardona, D. Sánchez Montero, and C. Vázquez, “Smart remote nodes fed by power over fiber in Internet of Things applications,” IEEE Sensors J., vol. 19, no. 17, pp. 7328–7334, 2019.

C. Vázquez, “Multicore fiber scenarios supporting power over fiber in radio over fiber systems,” IEEE Access, vol. 7, pp. 158409–158418, 2019.

J. D. López-Cardona, C. Vázquez, D. S. Montero, and P. C. Lallana, “Remote optical powering using fiber optics in hazardous environments,” J. Lightw. Technol., vol. 36, no. 3, pp. 748–754, 2018.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” in Proc. SPIE, 2017, Art. no. .

C. Vázquez, D. S. Montero, F. M. A. Al-Zubaidi, and J. D. López-Cardona, “Experiments on shared- and dedicated- power over fiber scenarios in multi-core fibers,” in Proc. Eur. Conf. Netw. Commun., Valencia, 2019, pp. 412–415.

Vilcot, J.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.

Wake, D.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.

Wang, K.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,’’ in Proc. J. Elect. Comput. Eng., 2016, Art. no. .

Wey, J. S.

J. S. Wey and J. Zhang, “Passive optical networks for 5G evolution,” in Proc. SPIE Broadband Access Commun. Technol. XII 10559, California, United States, 2018, Art. no. .

Wong, E.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068, 2018.

Wong, K. K. Y.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Wosinska, L.

M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.

Wu, J.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, ‘‘Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,’’ IEEE Commun. Surv. Tut., vol. 17, no. 2, pp. 803–826, 2015.

Xu, X.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Yang, S.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Yuk, T. I.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Yung, E. K.-N.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, ‘‘Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,’’ IEEE Commun. Surv. Tut., vol. 17, no. 2, pp. 803–826, 2015.

Zhang, C.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Zhang, J.

J. S. Wey and J. Zhang, “Passive optical networks for 5G evolution,” in Proc. SPIE Broadband Access Commun. Technol. XII 10559, California, United States, 2018, Art. no. .

Zhang, Y.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, ‘‘Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,’’ IEEE Commun. Surv. Tut., vol. 17, no. 2, pp. 803–826, 2015.

Zukerman, M.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, ‘‘Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,’’ IEEE Commun. Surv. Tut., vol. 17, no. 2, pp. 803–826, 2015.

5G Infrastructure Assoc. (1)

“5G pan-european trials roadmap version 2.0,” 5G Infrastructure Assoc., 2021, [Online]. Available: https://5g-ppp.eu/wp-content/uploads//2017/05/5GInfraPPP_TrialsWG_Roadmap_Version2.0.pdf

Eur. Telecommun. Standards Inst. (1)

Base Station (BS) radio transmission and reception, Eur. Telecommun. Standards Inst., 2021. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.05.00_60/ts_138104v150500p.pdf

IEEE Access (2)

G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G networks for the Internet of Things: Communication technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, Dec. 2017.

C. Vázquez, “Multicore fiber scenarios supporting power over fiber in radio over fiber systems,” IEEE Access, vol. 7, pp. 158409–158418, 2019.

IEEE Commun. Surv. Tut. (1)

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, ‘‘Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,’’ IEEE Commun. Surv. Tut., vol. 17, no. 2, pp. 803–826, 2015.

IEEE Photon. Technol. Lett. (1)

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1473–1475, 1998.

IEEE Sensors J. (2)

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini, “An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J., vol. 16, no. 13, pp. 5344–5353, 2016.

J. D. López-Cardona, D. Sánchez Montero, and C. Vázquez, “Smart remote nodes fed by power over fiber in Internet of Things applications,” IEEE Sensors J., vol. 19, no. 17, pp. 7328–7334, 2019.

IEEE Trans. Microw. Theory Techn. (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724, 1996.

IEEE/OSA J. Opt. Commun. Netw. (1)

M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti, “Modeling energy performance of C-RAN with optical transport in 5G network scenarios,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 11, pp. B21–B34, 2016.

J. Lightw. Technol. (7)

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491, 2008.

J. D. López-Cardona, C. Vázquez, D. S. Montero, and P. C. Lallana, “Remote optical powering using fiber optics in hazardous environments,” J. Lightw. Technol., vol. 36, no. 3, pp. 748–754, 2018.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068, 2018.

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightw. Technol., vol. 22, no. 1, pp. 79–93, 2004.

F. M. A. Al-Zubaidi, D. S. Montero, and C. Vázquez, “SI-POF supporting power-over-fiber in multi-Gbit/s transmission for in-home networks,” J. Lightw. Technol., vol. 39, no. 1, pp. 112–121, 2020.

J. Toulouse, “Optical nonlinearities in fibers: Review, recent examples, and systems applications,” J. Lightw. Technol., vol. 23, no. 11, pp. 3625–3641, 2005.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

J. Systemic (1)

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer,“Power transmission by optical fibers for component inherent communication,” J. Systemic, vol. 8, no. 1, pp. 55–60, 2010.

Proc. IEEE Photon. J. (1)

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” Proc. IEEE Photon. J., vol. 7, no. 1, pp. 1–9, 2015.

Other (12)

G. Otero, “SDN-based multi-core power-over-fiber (PoF) system for 5G fronthaul: Towards PoF pooling,” in Proc. Eur. Conf. Opt. Commun., pp. 1–3, 2018.

C. Vázquez, D. S. Montero, F. M. A. Al-Zubaidi, and J. D. López-Cardona, “Experiments on shared- and dedicated- power over fiber scenarios in multi-core fibers,” in Proc. Eur. Conf. Netw. Commun., Valencia, 2019, pp. 412–415.

T. Umezawa, “Multi-core based 94-GHz radio and power over fiber transmission using 100-GHz analog photoreceiver,” in Proc. ECOC, 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” in Proc. SPIE, 2017, Art. no. .

D. Konstantinou, A. Morales, S. Rommel, T. R. Raddo, U. Johannsen, and I. T. Monroy, “Analog radio over fiber fronthaul for high bandwidth 5G millimeter-wave carrier aggregated OFDM,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–4.

J. S. Wey and J. Zhang, “Passive optical networks for 5G evolution,” in Proc. SPIE Broadband Access Commun. Technol. XII 10559, California, United States, 2018, Art. no. .

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,’’ in Proc. J. Elect. Comput. Eng., 2016, Art. no. .

“Superior indoor coverage with 5G radio dot,” Ericsson. 2021. [Online]. Available: https://www.ericsson.com/en/ran/indoor-coverage

D. Phanish, “A wireless sensor network for monitoring the structural health of a football stadium,” in Proc. IEEE 2nd World Forum Internet Things, 2015, pp. 471–477.

T. G. R. Miyanabe, Y. Lee, H. Nishiyama, and N. Kato, “An Internet of Things traffic-based power saving scheme in cloud-radio access network,” in IEEE Internet Things J., vol. 6, no. 2, pp. 3087–3096, 2019.

“Connected stadiums,” Ericsson, 2021. [Online]. Available: https://www.ericsson.com/en/networks/offerings/urban-wireless/connected-stadium

J. Nanni, J. Polleux, C. Algani, S. Rusticelli, F. Perini, and G. Tartarini, “VCSEL-based radio-over-g652 fiber system for short-/medium-range MFH solutions,” in J. Lightw. Technol., vol. 36, no. 19, pp. 4430–4437, 2018.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.