Abstract

The spectral properties of the Rayleigh backscattered traces measured by a phase-sensitive optical time-domain reflectometer (ϕOTDR) with direct detection are theoretically and experimentally analyzed. The spectrum of the measured ϕOTDR signal is found to be strictly dependent on the spectral shape of the probing optical pulse. Furthermore, the visibility, spatial resolution, fading rate, and correlation spectrum of the traces are analyzed using different detection bandwidths. Results point out that the quality of ϕOTDR traces and target spatial resolution are secured only if the electrical bandwidth of the photodetector is broad enough to cover at least 80% of the total power contained in the electrical spectral density function of the measured trace. This means that in the case of using direct detection of the Rayleigh backscattered light induced by rectangular-shaped optical pulses, the minimum bandwidth required for a proper detection of the traces is equal to the reciprocal of the pulse temporal width (which is larger than the pulse spectral width). Although the theoretical analysis and numerical simulations are here experimentally validated for rectangular and sinc-shaped optical pulses, the results and methodology presented in this article can be applied to optimize the direct-detection bandwidth of ϕOTDR sensors using any optical pulse shape.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys., vol. 42, pp. 3481–3482, 2003.
  2. R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .
  3. X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express, vol. 25, no. 14, pp. 16059–16071, 2017.
  4. M. Imahama, Y. Koyamada, and K. Hogari, “Restorability of Rayleigh backscatter traces measured by coherent OTDR with precisely frequency-controlled light source,” IEICE Trans. Commun., vol. E91, no. 4, pp. 1243–1246, 2010.
  5. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.
  6. J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.
  7. Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.
  8. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys., vol. 25, 2015, Art. no. .
  9. J. W. Goodman, “Random process,” in Statistical Optics, 2nd ed., New York, USA: Wiley, 2000, pp. 60–115.
  10. P. Gysel and R. K. Staubli, “Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal,” J. Lightw. Technol., vol. 8, no. 12, pp. 1792–1798, 1990.
  11. A. Masoudi and T. P. Newson, “Analysis of distributed optical fibre acoustic sensors through numerical modelling,” Opt. Express, vol. 25, no. 25, pp. 32021–32040, 2017.
  12. X. Lu, M. A. Soto, and L. Thévenaz, “Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry,” Proc. SPIE, vol. 9916, 2016, Art. no. .
  13. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt., vol. 37, no. 10, pp. 1735–1740, 1998.
  14. X. Lu, M. A. Soto, and L. Thévenaz, “Impact of the fiber coating on the temperature response of distributed optical fiber sensors at cryogenic ranges,” J. Lightw. Technol., vol. 36, no. 4, pp. 961–967, 2018.
  15. H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.
  16. D. Marcuse, “Fundamentals,” in Principles of Optical Fiber Measurements, New York, USE: Academic Press, 1981, pp. 11–68.
  17. A. Yariv, H. Blauvelt, and S. Wu, “A reduction of interferometric phase-to-intensity conversion noise in fiber links by large index phase modulation of the optical beam,” J. Lightw. Technol., vol. 10, no. 7, pp. 978–981, 1992.
  18. A. E. Alekseev, Y. A. Tezadov, and V. T. Potapov, “The influence of the degree of coherence of a semiconductor laser on the statistic of the backscattered intensity in a single-mode optical fiber,” J. Commun. Technol. Electron, vol. 56, no. 12, pp. 1490–1498, 2011.
  19. L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightw. Technol., vol. 33, no. 17, pp. 3660–3671, 2015.
  20. M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett., vol. 26, no. 2, pp. 58–60, 2001.
  21. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.
  22. L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.
  23. M. A. Soto and Luc Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express, vol. 21, no. 25, pp. 31347–31366, 2013.

2019 (3)

R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .

Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.

L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.

2018 (1)

X. Lu, M. A. Soto, and L. Thévenaz, “Impact of the fiber coating on the temperature response of distributed optical fiber sensors at cryogenic ranges,” J. Lightw. Technol., vol. 36, no. 4, pp. 961–967, 2018.

2017 (2)

2016 (1)

X. Lu, M. A. Soto, and L. Thévenaz, “Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry,” Proc. SPIE, vol. 9916, 2016, Art. no. .

2015 (2)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys., vol. 25, 2015, Art. no. .

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightw. Technol., vol. 33, no. 17, pp. 3660–3671, 2015.

2013 (4)

M. A. Soto and Luc Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express, vol. 21, no. 25, pp. 31347–31366, 2013.

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.

J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.

2011 (1)

A. E. Alekseev, Y. A. Tezadov, and V. T. Potapov, “The influence of the degree of coherence of a semiconductor laser on the statistic of the backscattered intensity in a single-mode optical fiber,” J. Commun. Technol. Electron, vol. 56, no. 12, pp. 1490–1498, 2011.

2010 (1)

M. Imahama, Y. Koyamada, and K. Hogari, “Restorability of Rayleigh backscatter traces measured by coherent OTDR with precisely frequency-controlled light source,” IEICE Trans. Commun., vol. E91, no. 4, pp. 1243–1246, 2010.

2009 (1)

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

2003 (1)

J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys., vol. 42, pp. 3481–3482, 2003.

2001 (1)

1998 (1)

1992 (1)

A. Yariv, H. Blauvelt, and S. Wu, “A reduction of interferometric phase-to-intensity conversion noise in fiber links by large index phase modulation of the optical beam,” J. Lightw. Technol., vol. 10, no. 7, pp. 978–981, 1992.

1990 (1)

P. Gysel and R. K. Staubli, “Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal,” J. Lightw. Technol., vol. 8, no. 12, pp. 1792–1798, 1990.

Alekseev, A. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys., vol. 25, 2015, Art. no. .

A. E. Alekseev, Y. A. Tezadov, and V. T. Potapov, “The influence of the degree of coherence of a semiconductor laser on the statistic of the backscattered intensity in a single-mode optical fiber,” J. Commun. Technol. Electron, vol. 56, no. 12, pp. 1490–1498, 2011.

Bisyarin, M. A.

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightw. Technol., vol. 33, no. 17, pp. 3660–3671, 2015.

Blauvelt, H.

A. Yariv, H. Blauvelt, and S. Wu, “A reduction of interferometric phase-to-intensity conversion noise in fiber links by large index phase modulation of the optical beam,” J. Lightw. Technol., vol. 10, no. 7, pp. 978–981, 1992.

Cai, H.

J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.

Chen, Y.

Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.

Corredera, P.

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.

Costa, L. D.

L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.

Fang, Z.

J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.

Filograno, M. L.

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.

Frazão, O.

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

Froggatt, M.

Gonzalez-Herráez, M.

L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.

González-Herráez, M.

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.

Goodman, J. W.

J. W. Goodman, “Random process,” in Statistical Optics, 2nd ed., New York, USA: Wiley, 2000, pp. 60–115.

Gorshkov, B. G.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys., vol. 25, 2015, Art. no. .

Gysel, P.

P. Gysel and R. K. Staubli, “Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal,” J. Lightw. Technol., vol. 8, no. 12, pp. 1792–1798, 1990.

Hartog, A. H.

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightw. Technol., vol. 33, no. 17, pp. 3660–3671, 2015.

Hogari, K.

M. Imahama, Y. Koyamada, and K. Hogari, “Restorability of Rayleigh backscatter traces measured by coherent OTDR with precisely frequency-controlled light source,” IEICE Trans. Commun., vol. E91, no. 4, pp. 1243–1246, 2010.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Imahama, M.

M. Imahama, Y. Koyamada, and K. Hogari, “Restorability of Rayleigh backscatter traces measured by coherent OTDR with precisely frequency-controlled light source,” IEICE Trans. Commun., vol. E91, no. 4, pp. 1243–1246, 2010.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Jiang, J.

Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.

Jin, B.

R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .

Johnson, G. A.

Kotov, O. I.

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightw. Technol., vol. 33, no. 17, pp. 3660–3671, 2015.

Koyamada, Y.

M. Imahama, Y. Koyamada, and K. Hogari, “Restorability of Rayleigh backscatter traces measured by coherent OTDR with precisely frequency-controlled light source,” IEICE Trans. Commun., vol. E91, no. 4, pp. 1243–1246, 2010.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Kubota, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Lin, S.

Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.

Liokumovich, L. B.

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightw. Technol., vol. 33, no. 17, pp. 3660–3671, 2015.

Liu, X.

R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .

Lu, X.

X. Lu, M. A. Soto, and L. Thévenaz, “Impact of the fiber coating on the temperature response of distributed optical fiber sensors at cryogenic ranges,” J. Lightw. Technol., vol. 36, no. 4, pp. 961–967, 2018.

X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express, vol. 25, no. 14, pp. 16059–16071, 2017.

X. Lu, M. A. Soto, and L. Thévenaz, “Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry,” Proc. SPIE, vol. 9916, 2016, Art. no. .

Marcuse, D.

D. Marcuse, “Fundamentals,” in Principles of Optical Fiber Measurements, New York, USE: Academic Press, 1981, pp. 11–68.

Martin-Lopez, S.

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.

Martins, H. F.

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

Masoudi, A.

Mermelstein, M. D.

Moore, J.

Newson, T. P.

Pan, Z.

J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.

Park, J.

J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys., vol. 42, pp. 3481–3482, 2003.

Posey, R.

Potapov, V. T.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys., vol. 25, 2015, Art. no. .

A. E. Alekseev, Y. A. Tezadov, and V. T. Potapov, “The influence of the degree of coherence of a semiconductor laser on the statistic of the backscattered intensity in a single-mode optical fiber,” J. Commun. Technol. Electron, vol. 56, no. 12, pp. 1490–1498, 2011.

Qu, R.

J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.

Salgado, P.

Simikin, D. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys., vol. 25, 2015, Art. no. .

Soto, M. A.

L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.

X. Lu, M. A. Soto, and L. Thévenaz, “Impact of the fiber coating on the temperature response of distributed optical fiber sensors at cryogenic ranges,” J. Lightw. Technol., vol. 36, no. 4, pp. 961–967, 2018.

X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express, vol. 25, no. 14, pp. 16059–16071, 2017.

X. Lu, M. A. Soto, and L. Thévenaz, “Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry,” Proc. SPIE, vol. 9916, 2016, Art. no. .

M. A. Soto and Luc Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express, vol. 21, no. 25, pp. 31347–31366, 2013.

Staubli, R. K.

P. Gysel and R. K. Staubli, “Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal,” J. Lightw. Technol., vol. 8, no. 12, pp. 1792–1798, 1990.

Taylor, H. F.

J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys., vol. 42, pp. 3481–3482, 2003.

Tezadov, Y. A.

A. E. Alekseev, Y. A. Tezadov, and V. T. Potapov, “The influence of the degree of coherence of a semiconductor laser on the statistic of the backscattered intensity in a single-mode optical fiber,” J. Commun. Technol. Electron, vol. 56, no. 12, pp. 1490–1498, 2011.

Thévenaz, L.

L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.

X. Lu, M. A. Soto, and L. Thévenaz, “Impact of the fiber coating on the temperature response of distributed optical fiber sensors at cryogenic ranges,” J. Lightw. Technol., vol. 36, no. 4, pp. 961–967, 2018.

X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express, vol. 25, no. 14, pp. 16059–16071, 2017.

X. Lu, M. A. Soto, and L. Thévenaz, “Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry,” Proc. SPIE, vol. 9916, 2016, Art. no. .

Thévenaz, Luc

Ushakov, N. A.

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightw. Technol., vol. 33, no. 17, pp. 3660–3671, 2015.

Vdovenko, V. S.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys., vol. 25, 2015, Art. no. .

Vohra, S. T.

Wang, Y.

R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .

R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .

Wang, Z.

Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.

Wu, S.

A. Yariv, H. Blauvelt, and S. Wu, “A reduction of interferometric phase-to-intensity conversion noise in fiber links by large index phase modulation of the optical beam,” J. Lightw. Technol., vol. 10, no. 7, pp. 978–981, 1992.

Wu, Y.

Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.

Xiong, J.

Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.

Yang, Z.

L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.

Yariv, A.

A. Yariv, H. Blauvelt, and S. Wu, “A reduction of interferometric phase-to-intensity conversion noise in fiber links by large index phase modulation of the optical beam,” J. Lightw. Technol., vol. 10, no. 7, pp. 978–981, 1992.

Ye, Q.

J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.

Zhang, J.

R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .

Zhang, L.

L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.

Zhou, J.

J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.

Zinsou, R.

R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .

Appl. Opt. (1)

IEICE Trans. Commun. (1)

M. Imahama, Y. Koyamada, and K. Hogari, “Restorability of Rayleigh backscatter traces measured by coherent OTDR with precisely frequency-controlled light source,” IEICE Trans. Commun., vol. E91, no. 4, pp. 1243–1246, 2010.

J. Commun. Technol. Electron (1)

A. E. Alekseev, Y. A. Tezadov, and V. T. Potapov, “The influence of the degree of coherence of a semiconductor laser on the statistic of the backscattered intensity in a single-mode optical fiber,” J. Commun. Technol. Electron, vol. 56, no. 12, pp. 1490–1498, 2011.

J. Lightw. Technol. (9)

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightw. Technol., vol. 33, no. 17, pp. 3660–3671, 2015.

A. Yariv, H. Blauvelt, and S. Wu, “A reduction of interferometric phase-to-intensity conversion noise in fiber links by large index phase modulation of the optical beam,” J. Lightw. Technol., vol. 10, no. 7, pp. 978–981, 1992.

X. Lu, M. A. Soto, and L. Thévenaz, “Impact of the fiber coating on the temperature response of distributed optical fiber sensors at cryogenic ranges,” J. Lightw. Technol., vol. 36, no. 4, pp. 961–967, 2018.

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightw. Technol., vol. 31, no. 23, pp. 3631–3637, 2013.

J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a ϕ-OTDR with a multi-frequency source,” J. Lightw. Technol., vol. 31, no. 17, pp. 2947–2954, 2013.

Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in ϕ-OTDR,” J. Lightw. Technol., vol. 37, no. 13, pp. 3381–3387, 2019.

P. Gysel and R. K. Staubli, “Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal,” J. Lightw. Technol., vol. 8, no. 12, pp. 1792–1798, 1990.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

L. Zhang, L. D. Costa, Z. Yang, M. A. Soto, M. Gonzalez-Herráez, and L. Thévenaz, “Analysis and reduction of large errors in Rayleigh-based distributed sensor,” J. Lightw. Technol., vol. 37, no. 18, pp. 4710–4719, 2019.

Jpn. J. Appl. Phys. (1)

J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys., vol. 42, pp. 3481–3482, 2003.

Laser Phys (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys., vol. 25, 2015, Art. no. .

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

X. Lu, M. A. Soto, and L. Thévenaz, “Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry,” Proc. SPIE, vol. 9916, 2016, Art. no. .

Sensors (1)

R. Zinsou, X. Liu, Y. Wang, J. Zhang, Y. Wang, and B. Jin, “Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems,” Sensors, vol. 19, 2019, Art. no. .

Other (2)

J. W. Goodman, “Random process,” in Statistical Optics, 2nd ed., New York, USA: Wiley, 2000, pp. 60–115.

D. Marcuse, “Fundamentals,” in Principles of Optical Fiber Measurements, New York, USE: Academic Press, 1981, pp. 11–68.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.