Abstract

This article presents simultaneous data and power transmission systems using a double-clad fiber (DCF). In future radio-over-fiber (RoF) networks, a large number of remote antenna units (RAUs) will be required to provide various kinds of mobile communication services. Power-over-fiber (PWoF), which delivers electrical power to drive the RAUs in optical fibers, is an attractive technique that offers cost-effective installation, operation, and maintenance of RAUs, and achieves the power savings across the entire RoF networks. In particular, the use of double-clad fibers (DCFs), which consist of a single-mode (SM) core and an inner cladding that surrounds the SM core, are useful for much higher power transmission than conventional PWoF techniques. Along the DCF link, optical data signals are transmitted into the SM core, whereas high-power feed light for optical powering is transmitted into the inner cladding, which has a core area that is approximately 240 times larger core area than that of conventional SM cores. In this article, we experimentally demonstrate a PWoF feed with up to 150-W of power using a 1-km DCF. To show the feasibility of the PWoF system, we investigate the bend performance and temperature characteristics of the DCF link. We also evaluate data and power transmission performance under the 150-W PWoF feed in the DCF link.

PDF Article

References

  • View by:

  1. D. Nesset, “NG-PON2 technology and standards,” J. Lightw. Technol., vol. 33, no. 5, pp. 1136–1143,  2015.
  2. I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions,” IEEE Commun. Surv. Tuts., vol. 20, no. 1, pp. 708–769,  2018.
  3. J. Cooper, “‘Fiber/radio’ for the pr–ovision of cordless/mobile telephony services in the access network,” Electron. Lett., vol. 26, no. 24, pp. 2054–2056,  1990.
  4. M. Sauer, A. Kobyakov, and J. George, “Radio-over-fiber for picoceller network architectures,” J. Lightw. Technol., vol. 25, no. 11, pp. 3301–3320,  2007.
  5. C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.
  6. I. Ashraf, F. Boccardi, and L. Ho, “SLEEP mode techniques for small cell deployments,” IEEE Commun. Mag., vol. 49, no. 8, pp. 72–79,  2011.
  7. K. Sone, I. Kim, X. Wang, Y. Aoki, H. Seki, and J. C. Rasmussen, “Analysis of power consumption in mobile Backhaul network with densely deployed small cells under dynamic traffic behavior,” in Proc. Opto-Electron. Commun. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA4-2.
  8. J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,” IEEE Commun. Surv. Tuts., vol. 17, no. 2, pp. 803–826,  2015.
  9. M. Matsuura, “Power-over-fiber technologies for radio-over-fiber-based distributed antenna systems,” in Proc. Pacific Rim Conf. Lasers Electro-Opt., Hong Kong, 2018, Paper Th4F.2.
  10. T. Miki, K. Kawano, N. Nakajima, N. Kishi, M. Miyamoto, and T. Aoki, “Novel radio on fiber access eliminating electric power supply at base station,” in Proc. Opto-Electron. Commun. Conf., Shanghai, China, 2003, Paper 16D3-4.
  11. D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.
  12. C. Lethien, “Energy-autonomous picosecond remote antenna unit for radio-over-fiber system using the multiservice concept,” Photon. Technol. Lett., vol. 24, no. 8, pp. 649–651,  2012.
  13. H. Kuboki and M. Matsuura, “Optically powered radio-over-fiber system based on center- and offset-launching techniques using a conventional multimode fiber,” Opt. Lett., vol. 43, no. 5, pp. 1057–1070, Mar. 2018.
  14. A. Ikukawa, H. Kuboki, and M. Matsuura, “Relative phase noise evaluation of power-over-fiber in multimode fibers,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-P-09.
  15. J. Sato and M. Matsuura, “Radio-over-fiber transmission with optical power supply using a double-clad fiber,” in Proc. Conf. Lasers Electro-Opt. Pacific Rim, Opto-Electron. Commun. Conf./Photon. Switching, Kyoto, Japan, 2013, Paper TuPO-8.
  16. M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Art. no. .
  17. J. Sato, H. Furugori, and M. Matsuura, “40-Watt power-over-fiber using a double-clad fiber for optically powered radio-over-fiber systems,” in Proc. Opt. Fiber Commun. Conf. Expo., Los Angeles, USA, 2015, Paper W3F.6.
  18. M. Matsuura, H. Furugori, and J. Sato, “60 W power-over-fiber feed using double-clad-fibers for radio-over-fiber systems with optically powered remote antenna units,” OSA Opt. Lett., vol. 40, no. 23, pp. 5598–5601,  2015.
  19. A. Yoneyama, Y. Minamoto, and M. Matsuura, “Power-over-fiber transmission using 1.3-$\mu$m dual-channel radio-over-fiber signals in a double-clad fiber,” in Proc. Opto-Electron. Commun. Conf. Int. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA2-4.
  20. M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988,  2017.
  21. D. Kamiyama, A. Yoneyama, and M. Matsuura, “Multichannel data signals and power transmission by power-over-fiber using a double-clad fiber,” Photon. Technol. Lett., vol. 30, no. 7, pp. 646–649,  2018.
  22. M. Matsuura, “Optically powered radio-over-fiber systems,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper SM1C.3.
  23. N. Tajima, A. Yoneyama, D. Kamiyama, and M. Matsuura, “Over 1-km power-over-fiber using a double-clad fiber for bidirectional RoF systems,” in Proc. Opto-Electron. Commun. Conf., Jeju, Korea, 2018, Paper 4A4-2.
  24. N. Tajima, D. Kamiyama, and M. Matsuura, “150-Watt power-over-fiber feed for bidirectional radio-over-fiber systems using a double-clad fiber,” in Proc. Opt. Fiber Commun. Conf. Expo., W1I.7, San Diego, CA, USA, 2019.
  25. M. Matsuura, “Over 100-W power-over-fiber for remote antenna units,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-5-01.
  26. M. Perales, “Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications,” Proc. SPIE, vol. 9733, 2016, Art. no. .
  27. M. Perales, “Low cost laser power beaming and power over fiber systems,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-7-01.
  28. A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt., vol. 30, no. 3, pp. 321–327,  1991.
  29. Broadcom Inc., Optical power converters. 2019. [Online]. Available: https://www.broadcom.com/products
  30. O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett., vol. 108, no. 24, 2016. Art. no. .
  31. S. Fafard, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl Phys. Lett., vol. 109, no. 13, 2016, Art. no. .
  32. S. Fafard, “Ultrahigh efficiency optical power converters based on the vertical epitaxitial heterostructure architecture (VEHSA) design,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-3-01.
  33. J.-G. Werthen, “Powering next generation networks by laser light over fiber,” in Proc. Conf. Opt. Fiber Commun./Nat. Fiber Optic Eng. Conf., San Diego, USA, 2008, Paper OWO.3.
  34. S. J. Sweeney, S. D. Jarvis, and J. Mukherjee, “Laser power converters for eye-safe optical power delivery at 1550 nm: Physical characteristics and thermal behavior,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-2-04.
  35. M. M Wilkins, “Progress towards vertically stacked InAlGaAs photovoltaic power converters for fiber power transmission at 1310 nm,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-2-05.
  36. R. Yazawa and M. Matsuura, “Optically powered drone small cells using optical fibers,” IEICE Electron. Express, vol. 15, no. 10, 2018, Art. no. .

2018 (3)

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions,” IEEE Commun. Surv. Tuts., vol. 20, no. 1, pp. 708–769,  2018.

D. Kamiyama, A. Yoneyama, and M. Matsuura, “Multichannel data signals and power transmission by power-over-fiber using a double-clad fiber,” Photon. Technol. Lett., vol. 30, no. 7, pp. 646–649,  2018.

R. Yazawa and M. Matsuura, “Optically powered drone small cells using optical fibers,” IEICE Electron. Express, vol. 15, no. 10, 2018, Art. no. .

2017 (1)

M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988,  2017.

2016 (2)

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett., vol. 108, no. 24, 2016. Art. no. .

S. Fafard, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl Phys. Lett., vol. 109, no. 13, 2016, Art. no. .

2015 (4)

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Art. no. .

M. Matsuura, H. Furugori, and J. Sato, “60 W power-over-fiber feed using double-clad-fibers for radio-over-fiber systems with optically powered remote antenna units,” OSA Opt. Lett., vol. 40, no. 23, pp. 5598–5601,  2015.

D. Nesset, “NG-PON2 technology and standards,” J. Lightw. Technol., vol. 33, no. 5, pp. 1136–1143,  2015.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,” IEEE Commun. Surv. Tuts., vol. 17, no. 2, pp. 803–826,  2015.

2014 (1)

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

2012 (1)

C. Lethien, “Energy-autonomous picosecond remote antenna unit for radio-over-fiber system using the multiservice concept,” Photon. Technol. Lett., vol. 24, no. 8, pp. 649–651,  2012.

2011 (1)

I. Ashraf, F. Boccardi, and L. Ho, “SLEEP mode techniques for small cell deployments,” IEEE Commun. Mag., vol. 49, no. 8, pp. 72–79,  2011.

2008 (1)

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.

2007 (1)

M. Sauer, A. Kobyakov, and J. George, “Radio-over-fiber for picoceller network architectures,” J. Lightw. Technol., vol. 25, no. 11, pp. 3301–3320,  2007.

1991 (1)

1990 (1)

J. Cooper, “‘Fiber/radio’ for the pr–ovision of cordless/mobile telephony services in the access network,” Electron. Lett., vol. 26, no. 24, pp. 2054–2056,  1990.

Alimi, I. A.

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions,” IEEE Commun. Surv. Tuts., vol. 20, no. 1, pp. 708–769,  2018.

Aoki, T.

T. Miki, K. Kawano, N. Nakajima, N. Kishi, M. Miyamoto, and T. Aoki, “Novel radio on fiber access eliminating electric power supply at base station,” in Proc. Opto-Electron. Commun. Conf., Shanghai, China, 2003, Paper 16D3-4.

Aoki, Y.

K. Sone, I. Kim, X. Wang, Y. Aoki, H. Seki, and J. C. Rasmussen, “Analysis of power consumption in mobile Backhaul network with densely deployed small cells under dynamic traffic behavior,” in Proc. Opto-Electron. Commun. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA4-2.

Ashraf, I.

I. Ashraf, F. Boccardi, and L. Ho, “SLEEP mode techniques for small cell deployments,” IEEE Commun. Mag., vol. 49, no. 8, pp. 72–79,  2011.

Bett, A. W.

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett., vol. 108, no. 24, 2016. Art. no. .

Boccardi, F.

I. Ashraf, F. Boccardi, and L. Ho, “SLEEP mode techniques for small cell deployments,” IEEE Commun. Mag., vol. 49, no. 8, pp. 72–79,  2011.

Boechat, A. A. P.

Chang, G.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Cheng, L.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Cooper, J.

J. Cooper, “‘Fiber/radio’ for the pr–ovision of cordless/mobile telephony services in the access network,” Electron. Lett., vol. 26, no. 24, pp. 2054–2056,  1990.

Fafard, S.

S. Fafard, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl Phys. Lett., vol. 109, no. 13, 2016, Art. no. .

S. Fafard, “Ultrahigh efficiency optical power converters based on the vertical epitaxitial heterostructure architecture (VEHSA) design,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-3-01.

Furugori, H.

M. Matsuura, H. Furugori, and J. Sato, “60 W power-over-fiber feed using double-clad-fibers for radio-over-fiber systems with optically powered remote antenna units,” OSA Opt. Lett., vol. 40, no. 23, pp. 5598–5601,  2015.

J. Sato, H. Furugori, and M. Matsuura, “40-Watt power-over-fiber using a double-clad fiber for optically powered radio-over-fiber systems,” in Proc. Opt. Fiber Commun. Conf. Expo., Los Angeles, USA, 2015, Paper W3F.6.

George, J.

M. Sauer, A. Kobyakov, and J. George, “Radio-over-fiber for picoceller network architectures,” J. Lightw. Technol., vol. 25, no. 11, pp. 3301–3320,  2007.

Gomes, N. J.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.

Hall, D. R.

Helmers, H.

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett., vol. 108, no. 24, 2016. Art. no. .

Ho, L.

I. Ashraf, F. Boccardi, and L. Ho, “SLEEP mode techniques for small cell deployments,” IEEE Commun. Mag., vol. 49, no. 8, pp. 72–79,  2011.

Höhn, O.

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett., vol. 108, no. 24, 2016. Art. no. .

Ikukawa, A.

A. Ikukawa, H. Kuboki, and M. Matsuura, “Relative phase noise evaluation of power-over-fiber in multimode fibers,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-P-09.

Jarvis, S. D.

S. J. Sweeney, S. D. Jarvis, and J. Mukherjee, “Laser power converters for eye-safe optical power delivery at 1550 nm: Physical characteristics and thermal behavior,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-2-04.

Jones, J. D. C.

Kamiyama, D.

D. Kamiyama, A. Yoneyama, and M. Matsuura, “Multichannel data signals and power transmission by power-over-fiber using a double-clad fiber,” Photon. Technol. Lett., vol. 30, no. 7, pp. 646–649,  2018.

N. Tajima, A. Yoneyama, D. Kamiyama, and M. Matsuura, “Over 1-km power-over-fiber using a double-clad fiber for bidirectional RoF systems,” in Proc. Opto-Electron. Commun. Conf., Jeju, Korea, 2018, Paper 4A4-2.

N. Tajima, D. Kamiyama, and M. Matsuura, “150-Watt power-over-fiber feed for bidirectional radio-over-fiber systems using a double-clad fiber,” in Proc. Opt. Fiber Commun. Conf. Expo., W1I.7, San Diego, CA, USA, 2019.

Kawano, K.

T. Miki, K. Kawano, N. Nakajima, N. Kishi, M. Miyamoto, and T. Aoki, “Novel radio on fiber access eliminating electric power supply at base station,” in Proc. Opto-Electron. Commun. Conf., Shanghai, China, 2003, Paper 16D3-4.

Kim, I.

K. Sone, I. Kim, X. Wang, Y. Aoki, H. Seki, and J. C. Rasmussen, “Analysis of power consumption in mobile Backhaul network with densely deployed small cells under dynamic traffic behavior,” in Proc. Opto-Electron. Commun. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA4-2.

Kishi, N.

T. Miki, K. Kawano, N. Nakajima, N. Kishi, M. Miyamoto, and T. Aoki, “Novel radio on fiber access eliminating electric power supply at base station,” in Proc. Opto-Electron. Commun. Conf., Shanghai, China, 2003, Paper 16D3-4.

Kobyakov, A.

M. Sauer, A. Kobyakov, and J. George, “Radio-over-fiber for picoceller network architectures,” J. Lightw. Technol., vol. 25, no. 11, pp. 3301–3320,  2007.

Kuboki, H.

A. Ikukawa, H. Kuboki, and M. Matsuura, “Relative phase noise evaluation of power-over-fiber in multimode fibers,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-P-09.

H. Kuboki and M. Matsuura, “Optically powered radio-over-fiber system based on center- and offset-launching techniques using a conventional multimode fiber,” Opt. Lett., vol. 43, no. 5, pp. 1057–1070, Mar. 2018.

Lethien, C.

C. Lethien, “Energy-autonomous picosecond remote antenna unit for radio-over-fiber system using the multiservice concept,” Photon. Technol. Lett., vol. 24, no. 8, pp. 649–651,  2012.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.

Liu, C.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Matsuura, M.

D. Kamiyama, A. Yoneyama, and M. Matsuura, “Multichannel data signals and power transmission by power-over-fiber using a double-clad fiber,” Photon. Technol. Lett., vol. 30, no. 7, pp. 646–649,  2018.

R. Yazawa and M. Matsuura, “Optically powered drone small cells using optical fibers,” IEICE Electron. Express, vol. 15, no. 10, 2018, Art. no. .

M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988,  2017.

M. Matsuura, H. Furugori, and J. Sato, “60 W power-over-fiber feed using double-clad-fibers for radio-over-fiber systems with optically powered remote antenna units,” OSA Opt. Lett., vol. 40, no. 23, pp. 5598–5601,  2015.

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Art. no. .

J. Sato and M. Matsuura, “Radio-over-fiber transmission with optical power supply using a double-clad fiber,” in Proc. Conf. Lasers Electro-Opt. Pacific Rim, Opto-Electron. Commun. Conf./Photon. Switching, Kyoto, Japan, 2013, Paper TuPO-8.

A. Ikukawa, H. Kuboki, and M. Matsuura, “Relative phase noise evaluation of power-over-fiber in multimode fibers,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-P-09.

H. Kuboki and M. Matsuura, “Optically powered radio-over-fiber system based on center- and offset-launching techniques using a conventional multimode fiber,” Opt. Lett., vol. 43, no. 5, pp. 1057–1070, Mar. 2018.

J. Sato, H. Furugori, and M. Matsuura, “40-Watt power-over-fiber using a double-clad fiber for optically powered radio-over-fiber systems,” in Proc. Opt. Fiber Commun. Conf. Expo., Los Angeles, USA, 2015, Paper W3F.6.

M. Matsuura, “Optically powered radio-over-fiber systems,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper SM1C.3.

N. Tajima, A. Yoneyama, D. Kamiyama, and M. Matsuura, “Over 1-km power-over-fiber using a double-clad fiber for bidirectional RoF systems,” in Proc. Opto-Electron. Commun. Conf., Jeju, Korea, 2018, Paper 4A4-2.

M. Matsuura, “Power-over-fiber technologies for radio-over-fiber-based distributed antenna systems,” in Proc. Pacific Rim Conf. Lasers Electro-Opt., Hong Kong, 2018, Paper Th4F.2.

N. Tajima, D. Kamiyama, and M. Matsuura, “150-Watt power-over-fiber feed for bidirectional radio-over-fiber systems using a double-clad fiber,” in Proc. Opt. Fiber Commun. Conf. Expo., W1I.7, San Diego, CA, USA, 2019.

M. Matsuura, “Over 100-W power-over-fiber for remote antenna units,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-5-01.

A. Yoneyama, Y. Minamoto, and M. Matsuura, “Power-over-fiber transmission using 1.3-$\mu$m dual-channel radio-over-fiber signals in a double-clad fiber,” in Proc. Opto-Electron. Commun. Conf. Int. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA2-4.

Miki, T.

T. Miki, K. Kawano, N. Nakajima, N. Kishi, M. Miyamoto, and T. Aoki, “Novel radio on fiber access eliminating electric power supply at base station,” in Proc. Opto-Electron. Commun. Conf., Shanghai, China, 2003, Paper 16D3-4.

Minamoto, Y.

M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988,  2017.

A. Yoneyama, Y. Minamoto, and M. Matsuura, “Power-over-fiber transmission using 1.3-$\mu$m dual-channel radio-over-fiber signals in a double-clad fiber,” in Proc. Opto-Electron. Commun. Conf. Int. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA2-4.

Miyamoto, M.

T. Miki, K. Kawano, N. Nakajima, N. Kishi, M. Miyamoto, and T. Aoki, “Novel radio on fiber access eliminating electric power supply at base station,” in Proc. Opto-Electron. Commun. Conf., Shanghai, China, 2003, Paper 16D3-4.

Monteiro, P. P.

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions,” IEEE Commun. Surv. Tuts., vol. 20, no. 1, pp. 708–769,  2018.

Mukherjee, J.

S. J. Sweeney, S. D. Jarvis, and J. Mukherjee, “Laser power converters for eye-safe optical power delivery at 1550 nm: Physical characteristics and thermal behavior,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-2-04.

Nakajima, N.

T. Miki, K. Kawano, N. Nakajima, N. Kishi, M. Miyamoto, and T. Aoki, “Novel radio on fiber access eliminating electric power supply at base station,” in Proc. Opto-Electron. Commun. Conf., Shanghai, China, 2003, Paper 16D3-4.

Nesset, D.

D. Nesset, “NG-PON2 technology and standards,” J. Lightw. Technol., vol. 33, no. 5, pp. 1136–1143,  2015.

Nkansah, A.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.

Perales, M.

M. Perales, “Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications,” Proc. SPIE, vol. 9733, 2016, Art. no. .

M. Perales, “Low cost laser power beaming and power over fiber systems,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-7-01.

Rasmussen, J. C.

K. Sone, I. Kim, X. Wang, Y. Aoki, H. Seki, and J. C. Rasmussen, “Analysis of power consumption in mobile Backhaul network with densely deployed small cells under dynamic traffic behavior,” in Proc. Opto-Electron. Commun. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA4-2.

Sato, J.

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Art. no. .

M. Matsuura, H. Furugori, and J. Sato, “60 W power-over-fiber feed using double-clad-fibers for radio-over-fiber systems with optically powered remote antenna units,” OSA Opt. Lett., vol. 40, no. 23, pp. 5598–5601,  2015.

J. Sato, H. Furugori, and M. Matsuura, “40-Watt power-over-fiber using a double-clad fiber for optically powered radio-over-fiber systems,” in Proc. Opt. Fiber Commun. Conf. Expo., Los Angeles, USA, 2015, Paper W3F.6.

J. Sato and M. Matsuura, “Radio-over-fiber transmission with optical power supply using a double-clad fiber,” in Proc. Conf. Lasers Electro-Opt. Pacific Rim, Opto-Electron. Commun. Conf./Photon. Switching, Kyoto, Japan, 2013, Paper TuPO-8.

Sauer, M.

M. Sauer, A. Kobyakov, and J. George, “Radio-over-fiber for picoceller network architectures,” J. Lightw. Technol., vol. 25, no. 11, pp. 3301–3320,  2007.

Seki, H.

K. Sone, I. Kim, X. Wang, Y. Aoki, H. Seki, and J. C. Rasmussen, “Analysis of power consumption in mobile Backhaul network with densely deployed small cells under dynamic traffic behavior,” in Proc. Opto-Electron. Commun. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA4-2.

Sion, C.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.

Sone, K.

K. Sone, I. Kim, X. Wang, Y. Aoki, H. Seki, and J. C. Rasmussen, “Analysis of power consumption in mobile Backhaul network with densely deployed small cells under dynamic traffic behavior,” in Proc. Opto-Electron. Commun. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA4-2.

Su, D.

Sweeney, S. J.

S. J. Sweeney, S. D. Jarvis, and J. Mukherjee, “Laser power converters for eye-safe optical power delivery at 1550 nm: Physical characteristics and thermal behavior,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-2-04.

Tajima, N.

N. Tajima, D. Kamiyama, and M. Matsuura, “150-Watt power-over-fiber feed for bidirectional radio-over-fiber systems using a double-clad fiber,” in Proc. Opt. Fiber Commun. Conf. Expo., W1I.7, San Diego, CA, USA, 2019.

N. Tajima, A. Yoneyama, D. Kamiyama, and M. Matsuura, “Over 1-km power-over-fiber using a double-clad fiber for bidirectional RoF systems,” in Proc. Opto-Electron. Commun. Conf., Jeju, Korea, 2018, Paper 4A4-2.

Teixeira, A. L.

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions,” IEEE Commun. Surv. Tuts., vol. 20, no. 1, pp. 708–769,  2018.

Vilcot, J.-P.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.

Wake, D.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.

Walker, A. W.

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett., vol. 108, no. 24, 2016. Art. no. .

Wang, J.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Wang, X.

K. Sone, I. Kim, X. Wang, Y. Aoki, H. Seki, and J. C. Rasmussen, “Analysis of power consumption in mobile Backhaul network with densely deployed small cells under dynamic traffic behavior,” in Proc. Opto-Electron. Commun. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA4-2.

Werthen, J.-G.

J.-G. Werthen, “Powering next generation networks by laser light over fiber,” in Proc. Conf. Opt. Fiber Commun./Nat. Fiber Optic Eng. Conf., San Diego, USA, 2008, Paper OWO.3.

Wilkins, M. M

M. M Wilkins, “Progress towards vertically stacked InAlGaAs photovoltaic power converters for fiber power transmission at 1310 nm,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-2-05.

Wu, J.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,” IEEE Commun. Surv. Tuts., vol. 17, no. 2, pp. 803–826,  2015.

Yazawa, R.

R. Yazawa and M. Matsuura, “Optically powered drone small cells using optical fibers,” IEICE Electron. Express, vol. 15, no. 10, 2018, Art. no. .

Yoneyama, A.

D. Kamiyama, A. Yoneyama, and M. Matsuura, “Multichannel data signals and power transmission by power-over-fiber using a double-clad fiber,” Photon. Technol. Lett., vol. 30, no. 7, pp. 646–649,  2018.

N. Tajima, A. Yoneyama, D. Kamiyama, and M. Matsuura, “Over 1-km power-over-fiber using a double-clad fiber for bidirectional RoF systems,” in Proc. Opto-Electron. Commun. Conf., Jeju, Korea, 2018, Paper 4A4-2.

A. Yoneyama, Y. Minamoto, and M. Matsuura, “Power-over-fiber transmission using 1.3-$\mu$m dual-channel radio-over-fiber signals in a double-clad fiber,” in Proc. Opto-Electron. Commun. Conf. Int. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA2-4.

Yung, E. K.-N.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,” IEEE Commun. Surv. Tuts., vol. 17, no. 2, pp. 803–826,  2015.

Zhang, Y.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,” IEEE Commun. Surv. Tuts., vol. 17, no. 2, pp. 803–826,  2015.

Zhu, M.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Zukerman, M.

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,” IEEE Commun. Surv. Tuts., vol. 17, no. 2, pp. 803–826,  2015.

Appl Phys. Lett. (1)

S. Fafard, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl Phys. Lett., vol. 109, no. 13, 2016, Art. no. .

Appl. Opt. (1)

Appl. Phys. Lett. (1)

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett., vol. 108, no. 24, 2016. Art. no. .

Electron. Lett. (1)

J. Cooper, “‘Fiber/radio’ for the pr–ovision of cordless/mobile telephony services in the access network,” Electron. Lett., vol. 26, no. 24, pp. 2054–2056,  1990.

IEEE Commun. Mag. (1)

I. Ashraf, F. Boccardi, and L. Ho, “SLEEP mode techniques for small cell deployments,” IEEE Commun. Mag., vol. 49, no. 8, pp. 72–79,  2011.

IEEE Commun. Surv. Tuts. (2)

J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey,” IEEE Commun. Surv. Tuts., vol. 17, no. 2, pp. 803–826,  2015.

I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions,” IEEE Commun. Surv. Tuts., vol. 20, no. 1, pp. 708–769,  2018.

IEEE Photon. J. (1)

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Art. no. .

IEICE Electron. Express (1)

R. Yazawa and M. Matsuura, “Optically powered drone small cells using optical fibers,” IEICE Electron. Express, vol. 15, no. 10, 2018, Art. no. .

J. Lightw. Technol. (5)

M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988,  2017.

D. Wake, A. Nkansah, N. J. Gomes, C. Lethien, C. Sion, and J.-P. Vilcot, “Optically powered remote units for radio-over-fiber systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2484–2491,  2008.

D. Nesset, “NG-PON2 technology and standards,” J. Lightw. Technol., vol. 33, no. 5, pp. 1136–1143,  2015.

M. Sauer, A. Kobyakov, and J. George, “Radio-over-fiber for picoceller network architectures,” J. Lightw. Technol., vol. 25, no. 11, pp. 3301–3320,  2007.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Opt. Lett. (1)

H. Kuboki and M. Matsuura, “Optically powered radio-over-fiber system based on center- and offset-launching techniques using a conventional multimode fiber,” Opt. Lett., vol. 43, no. 5, pp. 1057–1070, Mar. 2018.

OSA Opt. Lett. (1)

M. Matsuura, H. Furugori, and J. Sato, “60 W power-over-fiber feed using double-clad-fibers for radio-over-fiber systems with optically powered remote antenna units,” OSA Opt. Lett., vol. 40, no. 23, pp. 5598–5601,  2015.

Photon. Technol. Lett. (2)

C. Lethien, “Energy-autonomous picosecond remote antenna unit for radio-over-fiber system using the multiservice concept,” Photon. Technol. Lett., vol. 24, no. 8, pp. 649–651,  2012.

D. Kamiyama, A. Yoneyama, and M. Matsuura, “Multichannel data signals and power transmission by power-over-fiber using a double-clad fiber,” Photon. Technol. Lett., vol. 30, no. 7, pp. 646–649,  2018.

Other (18)

M. Matsuura, “Optically powered radio-over-fiber systems,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper SM1C.3.

N. Tajima, A. Yoneyama, D. Kamiyama, and M. Matsuura, “Over 1-km power-over-fiber using a double-clad fiber for bidirectional RoF systems,” in Proc. Opto-Electron. Commun. Conf., Jeju, Korea, 2018, Paper 4A4-2.

N. Tajima, D. Kamiyama, and M. Matsuura, “150-Watt power-over-fiber feed for bidirectional radio-over-fiber systems using a double-clad fiber,” in Proc. Opt. Fiber Commun. Conf. Expo., W1I.7, San Diego, CA, USA, 2019.

M. Matsuura, “Over 100-W power-over-fiber for remote antenna units,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-5-01.

M. Perales, “Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications,” Proc. SPIE, vol. 9733, 2016, Art. no. .

M. Perales, “Low cost laser power beaming and power over fiber systems,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-7-01.

Broadcom Inc., Optical power converters. 2019. [Online]. Available: https://www.broadcom.com/products

S. Fafard, “Ultrahigh efficiency optical power converters based on the vertical epitaxitial heterostructure architecture (VEHSA) design,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-3-01.

J.-G. Werthen, “Powering next generation networks by laser light over fiber,” in Proc. Conf. Opt. Fiber Commun./Nat. Fiber Optic Eng. Conf., San Diego, USA, 2008, Paper OWO.3.

S. J. Sweeney, S. D. Jarvis, and J. Mukherjee, “Laser power converters for eye-safe optical power delivery at 1550 nm: Physical characteristics and thermal behavior,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-2-04.

M. M Wilkins, “Progress towards vertically stacked InAlGaAs photovoltaic power converters for fiber power transmission at 1310 nm,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-2-05.

A. Ikukawa, H. Kuboki, and M. Matsuura, “Relative phase noise evaluation of power-over-fiber in multimode fibers,” in Proc. 1st Opt. Wireless Fiber Power Transmiss. Conf., Yokohama, Japan, 2019, Paper OWPT-P-09.

J. Sato and M. Matsuura, “Radio-over-fiber transmission with optical power supply using a double-clad fiber,” in Proc. Conf. Lasers Electro-Opt. Pacific Rim, Opto-Electron. Commun. Conf./Photon. Switching, Kyoto, Japan, 2013, Paper TuPO-8.

A. Yoneyama, Y. Minamoto, and M. Matsuura, “Power-over-fiber transmission using 1.3-$\mu$m dual-channel radio-over-fiber signals in a double-clad fiber,” in Proc. Opto-Electron. Commun. Conf. Int. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA2-4.

J. Sato, H. Furugori, and M. Matsuura, “40-Watt power-over-fiber using a double-clad fiber for optically powered radio-over-fiber systems,” in Proc. Opt. Fiber Commun. Conf. Expo., Los Angeles, USA, 2015, Paper W3F.6.

M. Matsuura, “Power-over-fiber technologies for radio-over-fiber-based distributed antenna systems,” in Proc. Pacific Rim Conf. Lasers Electro-Opt., Hong Kong, 2018, Paper Th4F.2.

T. Miki, K. Kawano, N. Nakajima, N. Kishi, M. Miyamoto, and T. Aoki, “Novel radio on fiber access eliminating electric power supply at base station,” in Proc. Opto-Electron. Commun. Conf., Shanghai, China, 2003, Paper 16D3-4.

K. Sone, I. Kim, X. Wang, Y. Aoki, H. Seki, and J. C. Rasmussen, “Analysis of power consumption in mobile Backhaul network with densely deployed small cells under dynamic traffic behavior,” in Proc. Opto-Electron. Commun. Conf. Photon. Switching, Niigata, Japan, 2016, Paper TuA4-2.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.