Abstract

Multiple cladding modes can exist in a small-core optical fiber unaccompanied by core modes, yet this fact has not been sufficiently explored in the literature to date. In this paper, we study the self-imaging of cladding modes in small-core optical fiber interferometers. Our analytical and numerical simulations and experiments show that unlike the self-imaging of core modes, self-imaging of cladding modes only appears at a set of discrete positions along the interferometer axis with an equal spacing corresponding to some discrete values of fiber core radius. This is the first observation of the discrete self-imaging effect in multimode waveguides. More strikingly, the self-imaging period of cladding modes grows exponentially with fiber core radius, unlike the quadratic relationship in the case of core modes. The findings bring new insights into the mode propagation in an optical fiber with a core at micro/nanoscale, which may open new avenues for exploring multimode fiber technologies in both linear and nonlinear optics.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription