Abstract

Polarization modulation of two phase-correlated, orthogonally polarized wavelengths by a parabolic waveform is a promising way to generate linear-frequency-modulated (LFM) signals, but the time-bandwidth product (TBWP) of the generated LFM signal is intrinsically limited by the achievable modulation index of the polarization modulator (PolM). In this paper, an approach to increase the TBWP of the LFM signal generated by polarization modulation is proposed and comprehensively studied by splitting the electrical parabolic waveforms into N pieces with identical amplitude. Applying the split parabolic signal to the PolM, the total equivalent phase shift would be boosted by N/2 times. As a result, the bandwidth as well as the TBWP of the generated LFM signal is increased by N/2 times. An experiment is carried out. As compared to the scheme using an unsplit parabolic signal, the TBWP is improved by more than 500 times. The relationships between the bandwidth, the time duration, and the TBWP of the generated signal with the parameters of the electrical waveform generator are discussed.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription