Abstract

Data center interconnect has stimulated the research on the short-reach communications with data rate beyond 100G per wavelength and transmission distance of hundreds of kilometers. Aiming at the high-speed short-reach communications, we recently proposed the Stokes vector direct detection (SV-DD) that realizes a linear complex optical channel similar to the coherent detection. In SV-DD, the transmitter places the signal and the carrier onto the orthogonal polarizations, while the receiver achieves the polarization insensitive 3-D detection in the Stokes space with the digital signal processing enabled polarization acquisition. SV-DD achieves 100% spectral efficiency with reference to the single-polarization coherent detection, and simultaneously attains the receiver phase diversity and the cancellation of photo-detection nonlinearity. We experimentally demonstrate the SV-DD signal transmission over 160-km standard single-mode fiber at data rates of both 80 and 160-Gb/s. SV-DD significantly decreases both the system hardware and DSP complexity compared with the polarization multiplexed coherent detection, while increases the system spectrum efficiency compared with the conventional intensity modulation direct detection. Therefore, SV-DD offers a cost-effective solution for the 100G per wavelength and beyond metropolitan area network (MAN). It also owns the potentials to be deployed in the future high-speed passive optical network (PON).

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription