Abstract

Directional couplers are widely used as one of the key components of optical integrated circuits. However, the coupling efficiency of the conventional directional coupler is highly sensitive to wavelength. This sensitivity degrades the characteristics of devices that contain directional couplers for wavelength division multiplexing transmission. A curved directional coupler has been proposed using silica optical waveguide as one of the coupler which realize wavelength insensitive, small footprint and tolerant to fabrication. In this paper, we theoretically investigated this curved coupler using Si wire waveguide and got results that the curved coupler whose bending radius of 21 $\mu$ m and coupling length of 7.40 $\mu$ m can reduce the wavelength dependence and achieve about a sevenfold enhancement of operational bandwidth in the transmittance variation range of $-$ 3 $\pm$ 0.1 dB compared with conventional directional coupler.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription