Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 6,
  • pp. 903-909
  • (2013)

Survivable Traffic Grooming in Elastic Optical Networks—Shared Protection

Not Accessible

Your library or personal account may give you access

Abstract

This study investigates the survivable traffic grooming problem for elastic optical networks with flexible spectrum grid employing new transmission technologies. In such networks, instead of following the traditional fixed ITU-T wavelength grid, optical transponders are capable of properly tuning their rates, and consequently their spectrum occupation, by introducing the fine-granular spectrum unit, called a frequency slot. The number of contiguous frequency slots allocated to an optical path (i.e., lightpath) is adjusted to the current network flow. In this study, we propose a novel shared protection specific to elastic networks, namely, elastic separate-protection-at-connection (ESPAC). It not only provides traditional backup sharing, but also offers a new opportunity of spectrum sharing enabled by the elasticity of the transponders: 1) if the working paths of two connections are link disjoint physically, and 2) if their backup paths traverse two lightpaths which are adjacent on a fiber link, then the two backup lightpaths can share spectrum. The new opportunity of spectrum sharing is realized by using First-Fit to assign working traffic and Last-Fit to assign backup traffic, and allowing spectrum overlap between adjacent backup wavelengths. The elasticity of the transponder enables the expansion and contraction of the lightpaths, thus when a single failure occurs in the network, lightpaths carrying backup flows can be tuned to appropriate rates in such a way that the overlap spectrum is used by only one of the adjacent lightpaths. The results show ESPAC is very spectrum efficient in elastic network setting.

© 2012 IEEE

PDF Article
More Like This
Virtualization of elastic optical networks and regenerators with traffic grooming

K. D. R. Assis, A. F. Santos, R. C. Almeida, M. J. Reed, B. Jaumard, and D. Simeonidou
J. Opt. Commun. Netw. 12(12) 428-442 (2020)

Exploiting Excess Capacity for Survivable Traffic Grooming in Optical Backbone Networks

Ferhat Dikbiyik, Massimo Tornatore, and Biswanath Mukherjee
J. Opt. Commun. Netw. 6(2) 127-137 (2014)

Survivable Impairment-Aware Traffic Grooming and Regenerator Placement With Connection-Level Protection

Chengyi Gao, Hakki C. Cankaya, Ankitkumar N. Patel, Jason P. Jue, Xi Wang, Qiong Zhang, Paparao Palacharla, and Motoyoshi Sekiya
J. Opt. Commun. Netw. 4(3) 259-270 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved