Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 24,
  • pp. 3915-3926
  • (2013)

Development of Versatile Polymer Waveguide Flex Technology for Use in Optical Interconnects

Not Accessible

Your library or personal account may give you access

Abstract

We report on the implementation of novel flexible polymer waveguide interconnects. They are based on newly developed mechanically flexible low-loss silicone waveguides. In addition to meeting the generic requirements of rigid waveguide interconnects, several flex-material challenges were mastered: a) mechanical flexibility permitting waveguide flexing down to radii of 1.0 mm without cracking; b) minimization of waveguide curling induced by the CTE mismatch between flex substrates and polymer layers to enable assembly and connectorization; c) greatly improved cladding adhesion on standard PCB flex substrates, such as polyimide; and d) high environmental stability despite the reduced polymer cross-linking required for better mechanical flexibility. The new waveguides exhibit excellent stability in damp heat (2000 h in 85 °C/85% rH) and under thermal shock (500 cycles from –40° to +120 °C), and lead-free solder reflow up to 260 °C. Using the newly engineered “Dow Corning WG-1017 Optical Waveguide Clad Dev Sample” and the established “Dow Corning WG-1010 Optical Waveguide Core”, we were able to develop a manufacturing process suitable for large areas and offering high process control and stability to produce waveguides having optical loss values of less than 0.05 dB/cm at 850 nm VCSEL wavelength and fulfilling requirements (a) to (d) above. We describe this manufacturing process and how we have overcome the material challenges mentioned. Furthermore, we present characterization and manufacturing results, show demonstrators, and outline the potential of flexible waveguides as versatile electro-optic assembly platform.

© 2013 IEEE

PDF Article
More Like This
Development of high-density single-mode polymer waveguides with low crosstalk for chip-to-chip optical interconnection

Akio Sugama, Kenichi Kawaguchi, Motoyuki Nishizawa, Hidenobu Muranaka, and Yasuhiko Arakawa
Opt. Express 21(20) 24231-24239 (2013)

Polymer waveguides for electro-optical integration in data centers and high-performance computers

Roger Dangel, Jens Hofrichter, Folkert Horst, Daniel Jubin, Antonio La Porta, Norbert Meier, Ibrahim Murat Soganci, Jonas Weiss, and Bert Jan Offrein
Opt. Express 23(4) 4736-4750 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.