Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 7,
  • pp. 987-996
  • (2011)

Recovery of Absolute Gas Absorption Line Shapes Using Tunable Diode Laser Spectroscopy With Wavelength Modulation—Part 2: Experimental Investigation

Not Accessible

Your library or personal account may give you access

Abstract

Recovery of absolute gas absorption line shapes from first harmonic residual AM (RAM) signals in tunable diode laser spectroscopy with wavelength modulation (TDLS-WM) offers significant advantages in terms of measurement accuracy (for gas concentration and pressure), freedom from the need for calibration and resilience to errors, or drift in system parameters/scaling factors. However, the signal strength and SNR are compromised somewhat relative to conventional WM spectroscopy (WMS) by the signal dependence on the laser's intensity modulation amplitude rather than on the direct intensity, and by the need to operate at low modulation index, ${m}\ (< 0.75)$, in the previously reported study. In part 1 of this two-part publication, we report a more universal approach to the analysis of recovered RAM signals and absolute absorption line shapes. This new approach extends the use of RAM techniques to arbitrary m values up to 2.2. In addition, it provides the basis for a comparison of signal strength between the RAM signals recovered by the phasor decomposition approach and conventional first and second harmonic TDLS-WM signals. The experimental study reported here validates the new model and demonstrates the use of the RAM techniques for accurate recovery of absolute gas absorption line shapes to ${m} = 2.2$ and above. Furthermore, it demonstrates that the RAM signal strengths can be increased significantly by increasing the modulation frequency and defines regimes of operation such that the directly recovered RAM signals are comparable to or even greater than the widely used conventional second harmonic TDLS-WM signal. Finally, a critique of the RAM techniques relative to the conventional approaches is given.

© 2011 IEEE

PDF Article
More Like This
Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line

Arup Lal Chakraborty, Keith Ruxton, Walter Johnstone, Michael Lengden, and Kevin Duffin
Opt. Express 17(12) 9602-9607 (2009)

Suppression of intensity modulation contributions to signals in second harmonic wavelength modulation spectroscopy

Arup Lal Chakraborty, Keith Ruxton, and Walter Johnstone
Opt. Lett. 35(14) 2400-2402 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved