Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 12,
  • pp. 1957-1967
  • (2009)

A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a 60 GHz broadband picocellular Radio-over-Fiber network architecture that enables seamless connectivity for highly mobile end-users. Its seamless communication capabilities arise by the supported handover scheme that relies on a novel Moving Extended Cell (MEC) concept. MEC exploits user-centric virtual groups of adjacent cells that transmit the same data content to the user and utilizes a switch mechanism for restructuring the virtual multi-cell area according to the user's mobility pattern, so that a virtual antenna group moves together with the mobile user. We present the theoretical formulation for MEC and show that it can provide zero packet loss and call dropping probability values in high-rate wireless services for a broad range of mobile speeds up to 40 m/sec, independently of the fiber link distances. We also demonstrate the physical layer network architecture and switch mechanism both for a RoF network with a single 60 GHz radio frequency (RF) over each wavelength, as well as for a RoF configuration supporting simultaneous multi-RF channel transmission over each optical wavelength. The performance of the multi-RF-over-$\lambda$ network implementation is evaluated via simulations showing successful 100 Mb/s radio signal transmission over fiber links longer than 30 km. To this end, MEC can enable seamless connectivity and bandwidth guarantees in 60 GHz picocellular RoF networks being also capable of serving multiple users over the same wavelength in a RF frequency-division-multiplexed (FDM) approach.

© 2009 IEEE

PDF Article
More Like This
Multichannel Resource Allocation Mechanism for 60 GHz Radio-Over-Fiber Local Access Networks

Zhuangzhuang Xu, Hongxiang Wang, and Yuefeng Ji
J. Opt. Commun. Netw. 5(3) 254-260 (2013)

Architectures and Algorithms for Radio-Over-Fiber Networks

Abhishek Dixit
J. Opt. Commun. Netw. 10(5) 535-544 (2018)

Client-Weighted Medium-Transparent MAC Protocol for User-Centric Fairness in 60  GHz Radio-Over-Fiber WLANs

G. Kalfas, P. Maniotis, S. Markou, D. Tsiokos, N. Pleros, L. Alonso, and C. Verikoukis
J. Opt. Commun. Netw. 6(1) 33-44 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved