Abstract

This paper investigates the performance of iterative (turbo) equalization to mitigate the effects of a polarization-mode dispersion (PMD) in nonreturn-to-zero (NRZ) intensity-modulated optical-fiber transmission systems. A PMD can lead to severe distortions in the received electrical signal and is a key limiter for the development of high-bit-rate transmission over currently used fibers. In order to reduce the distortions due to a PMD, the performance of symbol-by-symbol maximum a posteriori (sbs-MAP) soft-in/soft-out (SISO) decoders is studied. The SISO algorithms are adapted to the noise statistics of the optical channel where the photo detector leads to a non-Gaussian signal-dependent noise at the receiver side. The modified SISO algorithms are successfully employed for turbo equalization and results show that iterative (turbo) equalization and decoding for the compensation of a PMD can lead to a tremendous reduction in the bit error ratio (BER). Moreover, it is shown that, due to the robustness of mutual information, the extrinsic information transfer (EXIT) chart can be applied for the design of iterative receivers in optical transmission systems even with a non-Gaussian noise.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription