Abstract

We report the fabrication of zinc oxide (ZnO) thin-film transistors (TFTs) and simple integrated circuits by spray pyrolysis, and examine the role of beryllium (Be) as the chemical dopant. Doping is achieved through addition of Be-acetylacetonate into the parent Zn-acetate precursor solution followed by film deposition through spray pyrolysis. The microstructural properties of as-grown Be-ZnO films with different dopant concentrations are investigated using a combination of atomic force microscopy and x-ray diffraction techniques, which show the formation of polycrystalline films. Introduction of Be is found to impact the degree of crystallinity of ZnO films where a dramatic decrease in the average grain size is observed with increasing Be concentration. To assess the effects of Be-doping on the electrical properties of ZnO films we have fabricated Be-ZnO based TFTs using different doping concentrations. The average electron mobility calculated from these transistors is on the order of $\sim {{2}}\ {{cm}}^{2}\cdot{{V}}^{-1}\cdot{{s}}^{-1}$ with the threshold voltage $(V_{\rm TH})$ exhibiting a strong dependence on Be concentration. The ability to control ${V}_{\rm TH}$ through the introduction of Be has been exploited for the fabrication of unipolar inverters with symmetric trip-voltages and good noise margins.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription