Abstract

In this paper, we present a framework for modeling color liquid crystal displays (LCDs) having local light-emitting diode (LED) backlight with dimming capability. The proposed framework includes critical aspects like leakage, clipping, light diffusion and human perception of luminance and allows adjustable penalization of power consumption. Based on the framework, we have designed a set of optimization-based backlight dimming algorithms providing a perceptual optimal balance of clipping and leakage, if necessary. The novel algorithms are compared with several other schemes known from the literature, using both objective measures and subjective assessment. The results show that the novel algorithms provide better quality at a given energy level or lower energy at a given quality level.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription