Abstract

A low-power drive method for reducing dissipation power by 75% is developed for cathodoluminescence displays using metal–insulator–metal (MIM) cathodes. The dissipation power is the power consumed in driver circuits for charging and discharging capacitive loads of a display panel. The drive method, called high-impedance (high-Z) drive method, reduces the panel's effective capacitance by connecting non-selected scan lines to high-impedance driver outputs. No visual crosstalk occurred in displayed images on a 3.8-cm-diagonal MIM-cathode display, regardless of significant induced voltages observed on the high-impedance scan lines. This insensitivity to the induced voltages is mainly because the polarity of induced voltages is reverse for electron emission. To reduce the induced voltage, an “enhanced high-Z drive method” is also developed. Analytical formulae to calculate the dissipation power and the amplitude of the induced voltages are devised on the basis of a capacitor model of the MIM-cathode array. Excellent agreement between measured and calculated results validates this model. On the basis of the capacitor model, the total power consumption of a 32-inch diagonal MIM-cathode display is estimated. This estimation indicates the total power consumption would be only 24 W including dissipation power at an average brightness of 200 ${{cd/m}}^{2}$.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription