Abstract

Light-emitting diodes (LEDs) are the major backlighting source used in liquid crystal displays and dimming the LEDs is a common approach to increase the contrast ratio or save power. Pulse-width modulation (PWM) is more popular than analog methods of dimming, because it produces a less pronounced shift in chromaticity. However, in PWM dimming mode, overcurrent can shorten the lifespan of the LEDs. This paper proposes a technique to overcome the drawbacks inherent in conventional approaches to the suppression of overcurrent in LED devices. The design was implemented using the TSMC 0.25-<i>µ</i>m 60-V bipolar-CMOS-DMOS process, resulting in a chip area of 2.2 mm<sup>2</sup>. A comparison with two commercial chips demonstrates the effectiveness of the proposed design in the suppression of LED overcurrent and the subsequent extension of the lifespan.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription