Abstract

The work demonstrates a switchable transflective liquid crystal display using a cholesteric liquid crystal (CLC) film as a switchable reflector. The planar and uniformly-lying helical (ULH) states of CLCs support the reflective and transmissive modes of the display, respectively. Both planar and ULH textures are stable states, and each can be switched to the other via the electro-hydrodynamic effect by applying a low-frequency (30 Hz) electrical field. A transflective display with a CLC as switchable reflector can be utilized in any currently used display mode, such as TN, MVA, and IPS. Such a display exhibits high display performance in both indoor and outdoor environments and low power consumption. It therefore has great potential to be used in portable information systems.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. S. H. Lee, J. C. Kim, T. H. Yoon, "Transflective liquidcrystal display using low-twisted vertically aligned mode," Opt. Lett. 31, 2196-2198 (2006).
  2. W. Z. Chen, Y. T. Tsai, T. H. Lin, "Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects," Opt. Lett. 34, 2545-2547 (2009).
  3. Z. Ge, T. X. Wu, S. T. Wu, "Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer," Appl. Phys. Lett. 92, 051109-1-051109-3 (2008).
  4. J. H. Lee, X. Zhu, Y. H. Lin, W. K. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, S. T. Wu, "High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device," Opt. Express 13, 9431-9438 (2005).
  5. T. L. Chiu, H. Xianyu, Z. Ge, J. H. Lee, K. C. Liu, S. T. Wu, "Transflective device with a transparent organic light-emitting diode and a reflective liquid-crystal device," J. SID 1009-1013 (2009).
  6. K. H. Kim, H. J. Jin, B. H. Cheong, H. Y. Choi, S. T. Shin, J. C. Kim, T. H. Yoon, "Optical configurations for nematic liquid crystal device switchable between reflective and transmissive modes," Appl. Opt. 49, 4774-4779 (2010).
  7. H. J. Jin, K. H. Kim, H. Jin, J. C. Kim, T. H. Yoon, "Dye-doped liquid crystal device switchable between reflective and transmissive modes," J. Inf. Display 12, 17-21 (2011).
  8. K. H. Kim, H. J. Jin, D. H. Song, B. H. Cheong, H. Y. Choi, S. T. Shin, J. C. Kim, T.-H. Yoon, "Switching of liquid-crystal devices between reflective and transmissive modes using long-pitch cholesteric liquid crystals," Opt. Lett. 35, 3504-3506 (2010).
  9. C. T. Wang, W. Y. Wang, T. H. Lin, "A stable and switchable uniform lying helix structure in cholesteric liquid crystals," Appl. Phys. Lett. 99, 041108-1-041108-3 (2011).
  10. D. K. Yang, S. T. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (Wiley, 2006) pp. 290.
  11. D. K. Yang, J. W. Doane, Z. Yaniv, J. Glasser, "Cholesteric reflective display: Drive scheme and contrast," Appl. Phys. Lett. 64, 1905-1907 (1994).
  12. P. Rudquist, L. Komitov, S. T. Lagerwall, "Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics," Liquid Cryst. 24, 329-334 (1998).
  13. S. H. Kim, L. C. Chien, L. Komitov, "Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network," Appl. Phys. Lett. 86, 161118-1-161118-3 (2005).
  14. D. J. Broer, J. Lub, G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).
  15. Y. Huang, Y. Zhou, S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Opt. Express 15, 64146419 (2007).
  16. Y.-P. Huang, H.-P. David Shieh, S.-T. Wu, "Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement," Appl. Opt. 43, 3656-3666 (2004).
  17. X. Zhu, Z. Ge, T. X. Wu, S.-T. Wu, "Transflective liquid crystal displays," J. Display Technol. 1, 15-29 (2005).

2011 (2)

H. J. Jin, K. H. Kim, H. Jin, J. C. Kim, T. H. Yoon, "Dye-doped liquid crystal device switchable between reflective and transmissive modes," J. Inf. Display 12, 17-21 (2011).

C. T. Wang, W. Y. Wang, T. H. Lin, "A stable and switchable uniform lying helix structure in cholesteric liquid crystals," Appl. Phys. Lett. 99, 041108-1-041108-3 (2011).

2010 (2)

2009 (2)

W. Z. Chen, Y. T. Tsai, T. H. Lin, "Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects," Opt. Lett. 34, 2545-2547 (2009).

T. L. Chiu, H. Xianyu, Z. Ge, J. H. Lee, K. C. Liu, S. T. Wu, "Transflective device with a transparent organic light-emitting diode and a reflective liquid-crystal device," J. SID 1009-1013 (2009).

2008 (1)

Z. Ge, T. X. Wu, S. T. Wu, "Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer," Appl. Phys. Lett. 92, 051109-1-051109-3 (2008).

2007 (1)

Y. Huang, Y. Zhou, S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Opt. Express 15, 64146419 (2007).

2006 (1)

S. H. Lee, J. C. Kim, T. H. Yoon, "Transflective liquidcrystal display using low-twisted vertically aligned mode," Opt. Lett. 31, 2196-2198 (2006).

2005 (3)

2004 (1)

1998 (1)

P. Rudquist, L. Komitov, S. T. Lagerwall, "Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics," Liquid Cryst. 24, 329-334 (1998).

1995 (1)

D. J. Broer, J. Lub, G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).

1994 (1)

D. K. Yang, J. W. Doane, Z. Yaniv, J. Glasser, "Cholesteric reflective display: Drive scheme and contrast," Appl. Phys. Lett. 64, 1905-1907 (1994).

Appl. Phys. Lett. (2)

C. T. Wang, W. Y. Wang, T. H. Lin, "A stable and switchable uniform lying helix structure in cholesteric liquid crystals," Appl. Phys. Lett. 99, 041108-1-041108-3 (2011).

S. H. Kim, L. C. Chien, L. Komitov, "Short pitch cholesteric electro-optical device stabilized by nonuniform polymer network," Appl. Phys. Lett. 86, 161118-1-161118-3 (2005).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Z. Ge, T. X. Wu, S. T. Wu, "Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer," Appl. Phys. Lett. 92, 051109-1-051109-3 (2008).

D. K. Yang, J. W. Doane, Z. Yaniv, J. Glasser, "Cholesteric reflective display: Drive scheme and contrast," Appl. Phys. Lett. 64, 1905-1907 (1994).

J. Inf. Display (1)

H. J. Jin, K. H. Kim, H. Jin, J. C. Kim, T. H. Yoon, "Dye-doped liquid crystal device switchable between reflective and transmissive modes," J. Inf. Display 12, 17-21 (2011).

J. SID (1)

T. L. Chiu, H. Xianyu, Z. Ge, J. H. Lee, K. C. Liu, S. T. Wu, "Transflective device with a transparent organic light-emitting diode and a reflective liquid-crystal device," J. SID 1009-1013 (2009).

J. Display Technol. (1)

Liquid Cryst. (1)

P. Rudquist, L. Komitov, S. T. Lagerwall, "Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics," Liquid Cryst. 24, 329-334 (1998).

Nature (1)

D. J. Broer, J. Lub, G. N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature 378, 467-469 (1995).

Opt. Lett. (1)

S. H. Lee, J. C. Kim, T. H. Yoon, "Transflective liquidcrystal display using low-twisted vertically aligned mode," Opt. Lett. 31, 2196-2198 (2006).

Opt. Express (2)

Opt. Lett. (2)

Other (1)

D. K. Yang, S. T. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (Wiley, 2006) pp. 290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.