Abstract

The electrical stability of high-mobility microcrystalline silicon (μc-Si:H) thin-film transistors (TFTs) was investigated and compared to amorphous silicon (a-Si:H) TFTs. Under prolonged bias stress the microcrystalline silicon TFTs exhibit an improved electrical stability compared to amorphous silicon TFTs. The microcrystalline silicon TFTs were prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. The realized microcrystalline silicon transistors exhibit electron charge carrier mobilities exceeding 30 cm<sup>2</sup> /V · s. Prolonged operation of the transistors leads to a shift of the threshold voltage towards positive and negative gate voltages depending on the gate biasing conditions (positive or negative gate voltage). The shift of the threshold voltage increases with increasing positive and negative gate bias stress. The behavior is fundamentally different from the behavior of the amorphous silicon TFTs, which exhibit only a shift of the threshold voltage towards positive gate voltages irrespective of the polarity of the gate bias stress. The threshold voltage shift of the microcrystalline silicon TFTs saturates after a few minutes to a few hours, depending on the gate voltage. After prolonged bias stress, a recovery of the initial threshold voltage is observed without any thermal annealing or biasing of the transistors, which is not the case for the measured amorphous silicon TFTs.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. R. Kagan, P. Andry, Thin-Film Transistors New York, BaselUSAMarcel Dekker (Marcel Dekker, 2003).
  2. R. A. Street, Technology and Applications of Amorphous Silicon, Springer Series in Material Science BerlinGermanySpringer-Verlag (Springer-Verlag, 2000)37.
  3. R. B. Wehrspohn, S. C. Deane, M. J. Powell, "Defect creation kinetics in amorphous silicon thin film transistors," J. Non-Cryst. Solids 299–302, 492-496 (2002).
  4. M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane, W. I. Milne, "Defect pool in amorphous-silicon thin-film transistors," Phys. Rev. B 45, 4160-70 (1992).
  5. B. Hekmatshoar, S. Wagner, J. C. Sturm, "Tradeoff regimes of lifetime in amorphous silicon thin-film transistors and a universal lifetime comparison framework," Appl. Phys. Lett. 95, 143504 (2009).
  6. S. D. Brotherton, "Polycrystalline silicon thin film transistors," Semicond. Sci. Technol. 10, 721-738 (1995).
  7. S. D. Brotherton, "Poly-crystalline silicon thin film devices for large area electronics," Microelectronic Engineering 15, 333-340 (1991).
  8. M. G. Kane, "Organic and polymeric TFTs for flexible displays and circuits," Electron. Mater.: Sci. and Technol. 11, 215-260 (2009).
  9. A. Benor, A. Hoppe, V. Wagner, D. Knipp, "Electrical stability of pentacene thin film transistors," Organic Electron. 8, 749-758 (2007).
  10. A. Salleo, M. L. Chabinyc, Electrical and Environmental Stability of Polymer Thin-Film Transistors, Organic Electron.:Materials, Manufacturing and Applications (, 2006).
  11. C.-H. Lee, A. Sazonov, A. Nathan, "High-mobility nanocrystalline silicon thin-film transistor fabricated by plasma-enhanced chemical vapor deposition," Appl. Phys. Lett. 86, 222106 (2005).
  12. A. T. Krishnan, S. Bae, S. J. Fonash, "Fabrication of microcrystalline silicon TFTs using a high-density plasma approach," IEEE Electron Device Lett. 22, 399 (2001).
  13. J. I. Woo, H. J. Lim, J. Jang, "Polycrystalline silicon thin film transistors deposited at low substrate temperature by remote plasma chemical vapor deposition using ${\rm SiF}_{4}/{\rm H}_{2}$," Appl. Phys. Lett. 65, 1644-1646 (1994).
  14. I.-C. Cheng, S. Wagner, "Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150$^{\circ}{\rm C}$," Appl. Phys. Lett. 80, 440-442 (2002).
  15. K.-Y. Chan, A. Gordijn, H. Stiebig, D. Knipp, "Microcrystalline silicon transistors and CMOS inverters fabricated near the transition to amorphous growth regime," IEEE Trans. on Electron Devices 56, 1924-1929 (2009).
  16. C.-H. Lee, D. Striakhilev, A. Nathan, "Stability of nc-Si:H TFTs with silicon nitride gate dielectric," IEEE Trans. Electron Devices 54, 45 (2007).
  17. A. Orpella, C. Voz, J. Puigdollers, D. Dosev, M. Fonrodona, D. Soler, J. Bertomeu, J. M. Asensi, J. Andreu, R. Alcubilla, "Stability of hydrogenated nanocrystalline silicon thin-film transistors," Thin Solid Films 395, 335-338 (2001).
  18. C.-H. Lee, D. Striakhilev, S. Tao, A. Nathan, "Top-gate TFTs using 13.56 MHz PECVD microcrystalline silicon," IEEE Electron Device Lett. 26, 637 (2005).
  19. F. Taghibakhsh, M. M. Adachi, K. S. Karim, "Hot-wire deposited nanocrystalline silicon TFTs on plastic substrates," Mater. Res. Soc. Symp. Proc. (2007) pp. 0989-A20-04.
  20. P. R. I. Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drevillon, I. French, "Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique," J. Appl. Phys. 86, 7079 (1999).
  21. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, "Intrinsic microcrystalline silicon: A new material for photovoltaics," Sol. Energ. Mat. Sol. Cells 62, 97-108 (2000).
  22. I.-C. Cheng, S. Allen, S. Wagner, "Evolution of nanocrystalline silicon thin-film transistor channel layers," J. Non-Cryst. Solids 338–340, 720-724 (2004).
  23. L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda, "High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition," Jpn. J. Appl. Phys. 37, L1116-L1118 (1998).
  24. K.-Y. Chan, D. Knipp, A. Gordijn, H. Stiebig, "High-mobility microcrystalline silicon thin-film transistors prepared near the transition to amorphous growth," J. Appl. Phys. 104, 054506 (2008).
  25. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  26. M. J. Powell, C. van Berkel, I. D. French, D. H. Hicholls, "Bias dependence of instability mechanisms in amorphous silicon thin-film transistors," Appl. Phys. Lett. 51, 42-1244 (1987).
  27. K. S. Karim, A. Nathan, M. Hack, W. I. Milne, "Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs," IEEE Electron Device Lett. 25, 188-190 (2004).
  28. M. J. Powell, "The physics of amorphous-silicon thin-film transistors," IEEE Transact. Electron Devices 36, 2753-2763 (1989).
  29. A. Rolland, J. Richard, J. P. Kleider, D. Mencaraglia, "Electrical properties of amorphous silicon transistors and MIS-devices: Comparative study of top nitride and bottom nitride configurations," J. Electrochem. Soc. 140, 3679-83 (1993).
  30. J. P. Kleider, C. Longeaud, D. Mencaraglia, A. Rolland, P. Vitrou, J. Richard, "Density of states in thin-film transistors from the modulated photocurrent technique: Application to the study of metastabilities," J. Non-Cryst. Solids 164–166, 739-42 (1993).
  31. A. V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, "Solar energy materials and solar cells," Sol. Energ. Mat. Sol. Cells 78, 469-491 (2003).
  32. F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur, M. Gunes, "Stability of microcrystalline silicon for thin film solar cell applications," Proc. IEEE 150, 300 (2003).
  33. G. Yilmaz, E. Turan, M. Günes, V. Smirnov, F. Finger, R. Brüggemann, "Instability effects in hydrogenated microcrystalline silicon thin films," Phys. Status Solidi (c) 7, 700 (2010).
  34. S. Zafar, A. Callegari, E. Gusev, M. V. Fischetti, Charge Trapping Related Threshold Voltage Instabilities in High Permittivity Gate Dielectric Stacks (IBM Semiconductor Research and Development Center and T.J. Watson Research Center, 2003).
  35. L. Han, K. Song, P. Mandlik, S. Wagner, "Ultraflexible amorphous silicon transistors made with a resilient insulator," Appl. Phys. Lett. 96, 042111 (2010).

2010 (2)

G. Yilmaz, E. Turan, M. Günes, V. Smirnov, F. Finger, R. Brüggemann, "Instability effects in hydrogenated microcrystalline silicon thin films," Phys. Status Solidi (c) 7, 700 (2010).

L. Han, K. Song, P. Mandlik, S. Wagner, "Ultraflexible amorphous silicon transistors made with a resilient insulator," Appl. Phys. Lett. 96, 042111 (2010).

2009 (3)

B. Hekmatshoar, S. Wagner, J. C. Sturm, "Tradeoff regimes of lifetime in amorphous silicon thin-film transistors and a universal lifetime comparison framework," Appl. Phys. Lett. 95, 143504 (2009).

M. G. Kane, "Organic and polymeric TFTs for flexible displays and circuits," Electron. Mater.: Sci. and Technol. 11, 215-260 (2009).

K.-Y. Chan, A. Gordijn, H. Stiebig, D. Knipp, "Microcrystalline silicon transistors and CMOS inverters fabricated near the transition to amorphous growth regime," IEEE Trans. on Electron Devices 56, 1924-1929 (2009).

2008 (1)

K.-Y. Chan, D. Knipp, A. Gordijn, H. Stiebig, "High-mobility microcrystalline silicon thin-film transistors prepared near the transition to amorphous growth," J. Appl. Phys. 104, 054506 (2008).

2007 (2)

C.-H. Lee, D. Striakhilev, A. Nathan, "Stability of nc-Si:H TFTs with silicon nitride gate dielectric," IEEE Trans. Electron Devices 54, 45 (2007).

A. Benor, A. Hoppe, V. Wagner, D. Knipp, "Electrical stability of pentacene thin film transistors," Organic Electron. 8, 749-758 (2007).

2005 (2)

C.-H. Lee, A. Sazonov, A. Nathan, "High-mobility nanocrystalline silicon thin-film transistor fabricated by plasma-enhanced chemical vapor deposition," Appl. Phys. Lett. 86, 222106 (2005).

C.-H. Lee, D. Striakhilev, S. Tao, A. Nathan, "Top-gate TFTs using 13.56 MHz PECVD microcrystalline silicon," IEEE Electron Device Lett. 26, 637 (2005).

2004 (2)

I.-C. Cheng, S. Allen, S. Wagner, "Evolution of nanocrystalline silicon thin-film transistor channel layers," J. Non-Cryst. Solids 338–340, 720-724 (2004).

K. S. Karim, A. Nathan, M. Hack, W. I. Milne, "Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs," IEEE Electron Device Lett. 25, 188-190 (2004).

2003 (2)

A. V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, "Solar energy materials and solar cells," Sol. Energ. Mat. Sol. Cells 78, 469-491 (2003).

F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur, M. Gunes, "Stability of microcrystalline silicon for thin film solar cell applications," Proc. IEEE 150, 300 (2003).

2002 (2)

I.-C. Cheng, S. Wagner, "Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150$^{\circ}{\rm C}$," Appl. Phys. Lett. 80, 440-442 (2002).

R. B. Wehrspohn, S. C. Deane, M. J. Powell, "Defect creation kinetics in amorphous silicon thin film transistors," J. Non-Cryst. Solids 299–302, 492-496 (2002).

2001 (2)

A. T. Krishnan, S. Bae, S. J. Fonash, "Fabrication of microcrystalline silicon TFTs using a high-density plasma approach," IEEE Electron Device Lett. 22, 399 (2001).

A. Orpella, C. Voz, J. Puigdollers, D. Dosev, M. Fonrodona, D. Soler, J. Bertomeu, J. M. Asensi, J. Andreu, R. Alcubilla, "Stability of hydrogenated nanocrystalline silicon thin-film transistors," Thin Solid Films 395, 335-338 (2001).

2000 (1)

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, "Intrinsic microcrystalline silicon: A new material for photovoltaics," Sol. Energ. Mat. Sol. Cells 62, 97-108 (2000).

1999 (1)

P. R. I. Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drevillon, I. French, "Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique," J. Appl. Phys. 86, 7079 (1999).

1998 (1)

L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda, "High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition," Jpn. J. Appl. Phys. 37, L1116-L1118 (1998).

1995 (1)

S. D. Brotherton, "Polycrystalline silicon thin film transistors," Semicond. Sci. Technol. 10, 721-738 (1995).

1994 (1)

J. I. Woo, H. J. Lim, J. Jang, "Polycrystalline silicon thin film transistors deposited at low substrate temperature by remote plasma chemical vapor deposition using ${\rm SiF}_{4}/{\rm H}_{2}$," Appl. Phys. Lett. 65, 1644-1646 (1994).

1993 (2)

A. Rolland, J. Richard, J. P. Kleider, D. Mencaraglia, "Electrical properties of amorphous silicon transistors and MIS-devices: Comparative study of top nitride and bottom nitride configurations," J. Electrochem. Soc. 140, 3679-83 (1993).

J. P. Kleider, C. Longeaud, D. Mencaraglia, A. Rolland, P. Vitrou, J. Richard, "Density of states in thin-film transistors from the modulated photocurrent technique: Application to the study of metastabilities," J. Non-Cryst. Solids 164–166, 739-42 (1993).

1992 (1)

M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane, W. I. Milne, "Defect pool in amorphous-silicon thin-film transistors," Phys. Rev. B 45, 4160-70 (1992).

1991 (1)

S. D. Brotherton, "Poly-crystalline silicon thin film devices for large area electronics," Microelectronic Engineering 15, 333-340 (1991).

1989 (1)

M. J. Powell, "The physics of amorphous-silicon thin-film transistors," IEEE Transact. Electron Devices 36, 2753-2763 (1989).

1987 (1)

M. J. Powell, C. van Berkel, I. D. French, D. H. Hicholls, "Bias dependence of instability mechanisms in amorphous silicon thin-film transistors," Appl. Phys. Lett. 51, 42-1244 (1987).

Appl. Phys. Lett. (6)

B. Hekmatshoar, S. Wagner, J. C. Sturm, "Tradeoff regimes of lifetime in amorphous silicon thin-film transistors and a universal lifetime comparison framework," Appl. Phys. Lett. 95, 143504 (2009).

C.-H. Lee, A. Sazonov, A. Nathan, "High-mobility nanocrystalline silicon thin-film transistor fabricated by plasma-enhanced chemical vapor deposition," Appl. Phys. Lett. 86, 222106 (2005).

J. I. Woo, H. J. Lim, J. Jang, "Polycrystalline silicon thin film transistors deposited at low substrate temperature by remote plasma chemical vapor deposition using ${\rm SiF}_{4}/{\rm H}_{2}$," Appl. Phys. Lett. 65, 1644-1646 (1994).

I.-C. Cheng, S. Wagner, "Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150$^{\circ}{\rm C}$," Appl. Phys. Lett. 80, 440-442 (2002).

M. J. Powell, C. van Berkel, I. D. French, D. H. Hicholls, "Bias dependence of instability mechanisms in amorphous silicon thin-film transistors," Appl. Phys. Lett. 51, 42-1244 (1987).

L. Han, K. Song, P. Mandlik, S. Wagner, "Ultraflexible amorphous silicon transistors made with a resilient insulator," Appl. Phys. Lett. 96, 042111 (2010).

Electron. Mater.: Sci. and Technol. (1)

M. G. Kane, "Organic and polymeric TFTs for flexible displays and circuits," Electron. Mater.: Sci. and Technol. 11, 215-260 (2009).

IEEE Electron Device Lett. (3)

A. T. Krishnan, S. Bae, S. J. Fonash, "Fabrication of microcrystalline silicon TFTs using a high-density plasma approach," IEEE Electron Device Lett. 22, 399 (2001).

C.-H. Lee, D. Striakhilev, S. Tao, A. Nathan, "Top-gate TFTs using 13.56 MHz PECVD microcrystalline silicon," IEEE Electron Device Lett. 26, 637 (2005).

K. S. Karim, A. Nathan, M. Hack, W. I. Milne, "Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs," IEEE Electron Device Lett. 25, 188-190 (2004).

IEEE Trans. Electron Devices (1)

C.-H. Lee, D. Striakhilev, A. Nathan, "Stability of nc-Si:H TFTs with silicon nitride gate dielectric," IEEE Trans. Electron Devices 54, 45 (2007).

IEEE Trans. on Electron Devices (1)

K.-Y. Chan, A. Gordijn, H. Stiebig, D. Knipp, "Microcrystalline silicon transistors and CMOS inverters fabricated near the transition to amorphous growth regime," IEEE Trans. on Electron Devices 56, 1924-1929 (2009).

IEEE Transact. Electron Devices (1)

M. J. Powell, "The physics of amorphous-silicon thin-film transistors," IEEE Transact. Electron Devices 36, 2753-2763 (1989).

J. Appl. Phys. (2)

P. R. I. Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drevillon, I. French, "Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique," J. Appl. Phys. 86, 7079 (1999).

K.-Y. Chan, D. Knipp, A. Gordijn, H. Stiebig, "High-mobility microcrystalline silicon thin-film transistors prepared near the transition to amorphous growth," J. Appl. Phys. 104, 054506 (2008).

J. Electrochem. Soc. (1)

A. Rolland, J. Richard, J. P. Kleider, D. Mencaraglia, "Electrical properties of amorphous silicon transistors and MIS-devices: Comparative study of top nitride and bottom nitride configurations," J. Electrochem. Soc. 140, 3679-83 (1993).

J. Non-Cryst. Solids (3)

J. P. Kleider, C. Longeaud, D. Mencaraglia, A. Rolland, P. Vitrou, J. Richard, "Density of states in thin-film transistors from the modulated photocurrent technique: Application to the study of metastabilities," J. Non-Cryst. Solids 164–166, 739-42 (1993).

I.-C. Cheng, S. Allen, S. Wagner, "Evolution of nanocrystalline silicon thin-film transistor channel layers," J. Non-Cryst. Solids 338–340, 720-724 (2004).

R. B. Wehrspohn, S. C. Deane, M. J. Powell, "Defect creation kinetics in amorphous silicon thin film transistors," J. Non-Cryst. Solids 299–302, 492-496 (2002).

Jpn. J. Appl. Phys. (1)

L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda, "High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition," Jpn. J. Appl. Phys. 37, L1116-L1118 (1998).

Microelectronic Engineering (1)

S. D. Brotherton, "Poly-crystalline silicon thin film devices for large area electronics," Microelectronic Engineering 15, 333-340 (1991).

Organic Electron. (1)

A. Benor, A. Hoppe, V. Wagner, D. Knipp, "Electrical stability of pentacene thin film transistors," Organic Electron. 8, 749-758 (2007).

Phys. Rev. B (1)

M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane, W. I. Milne, "Defect pool in amorphous-silicon thin-film transistors," Phys. Rev. B 45, 4160-70 (1992).

Phys. Status Solidi (c) (1)

G. Yilmaz, E. Turan, M. Günes, V. Smirnov, F. Finger, R. Brüggemann, "Instability effects in hydrogenated microcrystalline silicon thin films," Phys. Status Solidi (c) 7, 700 (2010).

Proc. IEEE (1)

F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur, M. Gunes, "Stability of microcrystalline silicon for thin film solar cell applications," Proc. IEEE 150, 300 (2003).

Semicond. Sci. Technol. (1)

S. D. Brotherton, "Polycrystalline silicon thin film transistors," Semicond. Sci. Technol. 10, 721-738 (1995).

Sol. Energ. Mat. Sol. Cells (2)

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, "Intrinsic microcrystalline silicon: A new material for photovoltaics," Sol. Energ. Mat. Sol. Cells 62, 97-108 (2000).

A. V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, "Solar energy materials and solar cells," Sol. Energ. Mat. Sol. Cells 78, 469-491 (2003).

Thin Solid Films (1)

A. Orpella, C. Voz, J. Puigdollers, D. Dosev, M. Fonrodona, D. Soler, J. Bertomeu, J. M. Asensi, J. Andreu, R. Alcubilla, "Stability of hydrogenated nanocrystalline silicon thin-film transistors," Thin Solid Films 395, 335-338 (2001).

Other (6)

F. Taghibakhsh, M. M. Adachi, K. S. Karim, "Hot-wire deposited nanocrystalline silicon TFTs on plastic substrates," Mater. Res. Soc. Symp. Proc. (2007) pp. 0989-A20-04.

A. Salleo, M. L. Chabinyc, Electrical and Environmental Stability of Polymer Thin-Film Transistors, Organic Electron.:Materials, Manufacturing and Applications (, 2006).

C. R. Kagan, P. Andry, Thin-Film Transistors New York, BaselUSAMarcel Dekker (Marcel Dekker, 2003).

R. A. Street, Technology and Applications of Amorphous Silicon, Springer Series in Material Science BerlinGermanySpringer-Verlag (Springer-Verlag, 2000)37.

S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).

S. Zafar, A. Callegari, E. Gusev, M. V. Fischetti, Charge Trapping Related Threshold Voltage Instabilities in High Permittivity Gate Dielectric Stacks (IBM Semiconductor Research and Development Center and T.J. Watson Research Center, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.