Abstract

Phase-only holographic projection has prompted a great deal of research and has often been cited as a desirable method of 2-D image formation, since such a technique offers a number of advantages over conventional imaging projection technology , . Although holographic image formation was demonstrated some forty years ago , efforts at realizing a real-time 2-D video projection system based on this technique have not been successful, principally due to the computational complexity of calculating diffraction patterns in real time and the poor quality of the resultant images. In this paper, a new approach to hologram generation and display is presented which overcomes both of these problems, enabling—for the first time—a high-quality real-time holographic projector.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. E. Buckley, "Holographic laser projection technology (invited article)," Inf. Display 24, 22-25 (2008).
  2. E. Buckley, "Holographic laser projection technology," Proc. SID Symp. (2008) pp. 1074-1078.
  3. L. B. Lesem, P. M. Hirsch, "The Kinoform: A new wavefront reconstruction device," IBM J. Res. Dev. 13, 150-155 (1969).
  4. E. Buckley, R. Isele, D. Stindt, "Novel Human-Machine Interface (HMI) design enabled by holographic laser projection," Proc. SID Symp. (2009) pp. 172-177.
  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996) pp. 69-71.
  6. K. Heggarty, R. Chevalier, "Signal window minimum average error algorithm for computer-generated holograms," J. Opt. Soc. Amer. A 15, 625-635 (1998).
  7. T.-C. Poon, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, "Real-time two-dimensional holographic imaging by using an electron-beam-addressed spatial light modulator," Opt. Lett. 18, 63 (1993).
  8. T. Ito, T. Shimobaba, "One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television," Opt. Exp. 12, (2004).
  9. F. Mok, J. Diep, H.-K. Liu, D. Psaltis, "Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator," Opt. Lett. 11, 748 (1986).
  10. A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, W. A. Crossland, "Liquid crystal over silicon device characteristics for holographic projection of high-definition television images," Appl. Opt. 47, 4793-4803 (2008).
  11. M. P. Dames, R. J. Dowling, P. McKee, D. Wood, "Efficient optical elements to generate intensity weighted spot arrays: Design and fabrication," Appl. Opt. 30, 2685-2691 (1991).
  12. R. W. Gerchberg, W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  13. A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, "Real-time binary hologram generation for high-quality video projection applications," Proc. SID Symp. (2004) pp. 1-3.
  14. D. H. Kelly, D. van Norren, "Two-band model of heterochromatic flicker," J. Opt. Soc. Amer. 67, 1081-1090 (1977).
  15. E. Buckley, A. Cable, T. Wilkinson, N. Lawrence, "Viewing angle enhancement for two- and three-dimensional holographic displays using random super-resolution phase masks," Appl. Opt. 45, 7334-7341 (2006).
  16. P. Mash, "Real-time hologram generation using iterative methods," Proc. SPIE Holography Int. Conf. Holography, Opt. Recording, and Process. Inf. (2005) pp. 62521O.1-62521O.
  17. P. Mash, Signal processing systems UK Patent GB2429355B (2007).
  18. E. Buckley, T. Wilkinson, "Low image reconstruction error using continuous real axis modulation," Opt. Eng. 46, 025802 (2007).
  19. E. Hecht, Optics (Addison-Wesley, 1998).
  20. D. C. O'Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, "Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators," Appl. Opt. 33, 2795-2803 (1994).
  21. K. Heggarty, B. Fracasso, J.-L. de Bougrenet de la Tocaye, M. Birch, D. Krueerke, "A silicon backplane FLC spatial light modulator for uses within an optical telecommunications environment," Ferroelectrics 312, 39-55 (2004).
  22. M. J. O'Callaghan, R. Ferguson, R. Vohra, W. Thurmes, A. W. Harant, C. S. Pecinovsky, Y. Zhang, S. Yang, M. O'Neill, M. A. Handschy, "Bistable FLCOS devices for doubled-brightness micro-projectors," Proc. SID Symp. (2009) pp. 232-235.
  23. N. C. Gallacher, "Optimum quantisation in digital holography," Appl. Opt. 17, 109-115 (1977).
  24. T. Ito, K. Okano, "Color electroholography by three colored reference lights simultaneously incident upon one hologram panel," Opt. Exp. 12, 4320-4325 (2004).
  25. E. Buckley, "Speckle-reduced holographic laser projector," Proc. Int. Display Workshop (2008) pp. 187-188.
  26. J. W. Goodman, A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Res. Develop. 14, 478-484 (1970).
  27. F. Wyrowski, "Upper bound of the diffraction efficiency of diffractive phase elements," Opt. Lett. 16, 1915-1917 (1991).
  28. J. N. Mait, "Design of binary-phase and multiphase Fourier gratings for array generation," J. Opt. Soc. Amer. A 7, 1514-1528 (1990).
  29. F. Wyrowski, "Modulation schemes of phase gratings," Opt. Eng. 31, 251-257 (1992).
  30. V. Arrizón, M. Testorf, "Efficiency limit of spatially quantized Fourier array illuminators," Opt. Lett. 22, 197-199 (1997).
  31. R. Eschbach, "Comparison of error diffusion methods for computer-generated holograms," Appl. Opt. 30, 4361 (1991).

2008 (2)

2007 (1)

E. Buckley, T. Wilkinson, "Low image reconstruction error using continuous real axis modulation," Opt. Eng. 46, 025802 (2007).

2006 (1)

2004 (3)

K. Heggarty, B. Fracasso, J.-L. de Bougrenet de la Tocaye, M. Birch, D. Krueerke, "A silicon backplane FLC spatial light modulator for uses within an optical telecommunications environment," Ferroelectrics 312, 39-55 (2004).

T. Ito, K. Okano, "Color electroholography by three colored reference lights simultaneously incident upon one hologram panel," Opt. Exp. 12, 4320-4325 (2004).

T. Ito, T. Shimobaba, "One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television," Opt. Exp. 12, (2004).

1998 (1)

K. Heggarty, R. Chevalier, "Signal window minimum average error algorithm for computer-generated holograms," J. Opt. Soc. Amer. A 15, 625-635 (1998).

1997 (1)

1994 (1)

1993 (1)

1992 (1)

F. Wyrowski, "Modulation schemes of phase gratings," Opt. Eng. 31, 251-257 (1992).

1991 (3)

1990 (1)

J. N. Mait, "Design of binary-phase and multiphase Fourier gratings for array generation," J. Opt. Soc. Amer. A 7, 1514-1528 (1990).

1986 (1)

1977 (2)

D. H. Kelly, D. van Norren, "Two-band model of heterochromatic flicker," J. Opt. Soc. Amer. 67, 1081-1090 (1977).

N. C. Gallacher, "Optimum quantisation in digital holography," Appl. Opt. 17, 109-115 (1977).

1972 (1)

R. W. Gerchberg, W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

1970 (1)

J. W. Goodman, A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Res. Develop. 14, 478-484 (1970).

1969 (1)

L. B. Lesem, P. M. Hirsch, "The Kinoform: A new wavefront reconstruction device," IBM J. Res. Dev. 13, 150-155 (1969).

Appl. Opt. (6)

Ferroelectrics (1)

K. Heggarty, B. Fracasso, J.-L. de Bougrenet de la Tocaye, M. Birch, D. Krueerke, "A silicon backplane FLC spatial light modulator for uses within an optical telecommunications environment," Ferroelectrics 312, 39-55 (2004).

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, "The Kinoform: A new wavefront reconstruction device," IBM J. Res. Dev. 13, 150-155 (1969).

IBM J. Res. Develop. (1)

J. W. Goodman, A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Res. Develop. 14, 478-484 (1970).

Inf. Display (1)

E. Buckley, "Holographic laser projection technology (invited article)," Inf. Display 24, 22-25 (2008).

J. Opt. Soc. Amer. (1)

D. H. Kelly, D. van Norren, "Two-band model of heterochromatic flicker," J. Opt. Soc. Amer. 67, 1081-1090 (1977).

J. Opt. Soc. Amer. A (2)

K. Heggarty, R. Chevalier, "Signal window minimum average error algorithm for computer-generated holograms," J. Opt. Soc. Amer. A 15, 625-635 (1998).

J. N. Mait, "Design of binary-phase and multiphase Fourier gratings for array generation," J. Opt. Soc. Amer. A 7, 1514-1528 (1990).

Opt. Eng. (2)

F. Wyrowski, "Modulation schemes of phase gratings," Opt. Eng. 31, 251-257 (1992).

E. Buckley, T. Wilkinson, "Low image reconstruction error using continuous real axis modulation," Opt. Eng. 46, 025802 (2007).

Opt. Exp. (2)

T. Ito, K. Okano, "Color electroholography by three colored reference lights simultaneously incident upon one hologram panel," Opt. Exp. 12, 4320-4325 (2004).

T. Ito, T. Shimobaba, "One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television," Opt. Exp. 12, (2004).

Opt. Lett. (4)

Optik (1)

R. W. Gerchberg, W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Other (9)

A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, "Real-time binary hologram generation for high-quality video projection applications," Proc. SID Symp. (2004) pp. 1-3.

P. Mash, "Real-time hologram generation using iterative methods," Proc. SPIE Holography Int. Conf. Holography, Opt. Recording, and Process. Inf. (2005) pp. 62521O.1-62521O.

P. Mash, Signal processing systems UK Patent GB2429355B (2007).

E. Buckley, "Holographic laser projection technology," Proc. SID Symp. (2008) pp. 1074-1078.

E. Buckley, R. Isele, D. Stindt, "Novel Human-Machine Interface (HMI) design enabled by holographic laser projection," Proc. SID Symp. (2009) pp. 172-177.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996) pp. 69-71.

E. Buckley, "Speckle-reduced holographic laser projector," Proc. Int. Display Workshop (2008) pp. 187-188.

E. Hecht, Optics (Addison-Wesley, 1998).

M. J. O'Callaghan, R. Ferguson, R. Vohra, W. Thurmes, A. W. Harant, C. S. Pecinovsky, Y. Zhang, S. Yang, M. O'Neill, M. A. Handschy, "Bistable FLCOS devices for doubled-brightness micro-projectors," Proc. SID Symp. (2009) pp. 232-235.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.