Abstract

Water remains the most extensively studied electrowetting fluid, but few reports exist on nonaqueous conducting solvents. Reported herein is a complete analysis of alternate fluids for electrowetting devices and displays. Emphasis is provided on real-world testing parameters, including contact angle response and immiscibility with oil, environmental range, interfacial tension, ionic content and influence on dielectric reliability, compatibility with additives such as soluble dyes or particle dispersions, and cross-diffusion of fluids or solutes. Out of 16 preselected fluids, six exhibited electrowetting performance comparable to the best aqueous:surfactant solutions. Use of the nonaqueous fluids in advanced display devices is also demonstrated.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. F. Mugele, J.-C. Baret, "Electrowetting: From basics to applications," J. Phys.: Condens. Matter 17, 707-774 (2005).
  2. R. B. Fair, "Digital microfluidics: Is a true lab-on-a-chip possible?," Microfluid. Nanofluid. 3, 245-281 (2007).
  3. H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, C.-J. Kim, "An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS," Lab Chip 6, 1213-1219 (2006).
  4. I. Barbulovic-Nad, H. Yang, P. S. Park, A. R. Wheeler, "Digital microfluidics for cell-based assays," Lab Chip 8, 519-526 (2008).
  5. B. Berge, "Liquid lens technology: Principle of electrowetting based lenses and applications to imaging," Proc. IEEE MEMS (2005) pp. 227-230.
  6. R. Hayes, B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
  7. J. Heikenfeld, K. Zhou, E. Kreit, "Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions," Nat. Photon. 3, 292-296 (2009).
  8. K. Blankenbach, A. Schmoll, A. Bitman, F. Bartels, D. Jerosch, "Novel highly reflective and bistable electrowetting displays," J. Soc. Inf. Display 16, 237-244 (2008).
  9. B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, J. Heikenfeld, "Ion and liquid dependent dielectric failure in electrowetting systems," Langmuir 25, 12387-12392 (2009).
  10. M. Dhindsa, S. Kuiper, J. Heikenfeld, "Reliable and low-voltage electrowetting on thin parylene films," Thin Solid Films 519, 3346-3351 (2011).
  11. S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, J. Ralston, "Electrowetting of ionic liquids," J. Amer. Chem. Soc. 128, 3098-3101 (2006).
  12. Y. S. Nanayakkara, H. Moon, T. Payagala, A. B. Wijeratne, J. A. Crank, P. S. Sharma, D. W. Armstrong, "A fundamental study on electrowetting by traditional and multifunctional ionic liquids: Possible use in electrowetting on dielectrics-based microfluidic applications," Anal. Chem. 80, 7690-7698 (2008).
  13. J. Restolho, J. L. Mata, B. Saramago, "Electrowetting of ionic liquids: Contact angle saturation and irreversibility," J. Phys. Chem. C 113, 9321-9327 (2009).
  14. S. Zhang, X. Hu, C. Qu, Q. Zhang, X. Ma, L. Lu, X. Li, X. Zhang, Y. Deng, "Enhanced and reversible contact angle modulation of ionic liquids in oil under AC electric field," Chem. Phys. Chem. 11, 2327-2331 (2010).
  15. D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, R. L. Garrell, "Droplet-based microfluidics with nonaqueous solvents and solutions," Lab Chip 6, 199-206 (2006).
  16. S. Chevalliot, S. Kuiper, J. Heikenfeld, "Experimental validation of the invariance of electrowetting contact angle saturation," J. Adhes. Sci. Technol. in press.
  17. T. B. Jones, "An electromechanical interpretation of electrowetting," Micromech. Microeng. 15, 1184-1187 (2005).
  18. Handbook of Organic Solvents (CRC, 1995).
  19. R. Zimmermann, S. Dukhin, C. Werner, "Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions," J. Phys. Chem. B 105, 8544-8549 (2001).
  20. H. Liu, S. Dharmatilleke, D. K. Maurya, A. A. O. Tay, "Dielectric materials for electrowetting-on-dielectric actuation," Mycrosyst. Technol. 16, 449-460 (2010).
  21. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, M. R. Johnson, "A full description of a simple and scalable fabrication process for electrowetting display," J. Micromech.Microeng. 19, 065029 (2009).
  22. B. Sun, K. Zhou, Y. Lao, W. Cheng, J. Heikenfeld, "Scalable fabrication of electrowetting displays with self-assembled oil dosing," Appl. Phys. Lett. 91, (2007) 011106.
  23. K. A. Dean, K. Zhou, S. Smith, B. Brollier, H. Atkuri, J. Rudolph, S. Yang, S. Chevalliot, E. Kreit, J. Heikenfeld, "Electrofluidic displays: Multi-stability and display technology progress," SID Symp. Dig. (2011) pp. 111-113.

2011

M. Dhindsa, S. Kuiper, J. Heikenfeld, "Reliable and low-voltage electrowetting on thin parylene films," Thin Solid Films 519, 3346-3351 (2011).

2010

S. Zhang, X. Hu, C. Qu, Q. Zhang, X. Ma, L. Lu, X. Li, X. Zhang, Y. Deng, "Enhanced and reversible contact angle modulation of ionic liquids in oil under AC electric field," Chem. Phys. Chem. 11, 2327-2331 (2010).

H. Liu, S. Dharmatilleke, D. K. Maurya, A. A. O. Tay, "Dielectric materials for electrowetting-on-dielectric actuation," Mycrosyst. Technol. 16, 449-460 (2010).

2009

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, M. R. Johnson, "A full description of a simple and scalable fabrication process for electrowetting display," J. Micromech.Microeng. 19, 065029 (2009).

J. Restolho, J. L. Mata, B. Saramago, "Electrowetting of ionic liquids: Contact angle saturation and irreversibility," J. Phys. Chem. C 113, 9321-9327 (2009).

J. Heikenfeld, K. Zhou, E. Kreit, "Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions," Nat. Photon. 3, 292-296 (2009).

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, J. Heikenfeld, "Ion and liquid dependent dielectric failure in electrowetting systems," Langmuir 25, 12387-12392 (2009).

2008

K. Blankenbach, A. Schmoll, A. Bitman, F. Bartels, D. Jerosch, "Novel highly reflective and bistable electrowetting displays," J. Soc. Inf. Display 16, 237-244 (2008).

I. Barbulovic-Nad, H. Yang, P. S. Park, A. R. Wheeler, "Digital microfluidics for cell-based assays," Lab Chip 8, 519-526 (2008).

Y. S. Nanayakkara, H. Moon, T. Payagala, A. B. Wijeratne, J. A. Crank, P. S. Sharma, D. W. Armstrong, "A fundamental study on electrowetting by traditional and multifunctional ionic liquids: Possible use in electrowetting on dielectrics-based microfluidic applications," Anal. Chem. 80, 7690-7698 (2008).

2007

R. B. Fair, "Digital microfluidics: Is a true lab-on-a-chip possible?," Microfluid. Nanofluid. 3, 245-281 (2007).

B. Sun, K. Zhou, Y. Lao, W. Cheng, J. Heikenfeld, "Scalable fabrication of electrowetting displays with self-assembled oil dosing," Appl. Phys. Lett. 91, (2007) 011106.

2006

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, C.-J. Kim, "An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS," Lab Chip 6, 1213-1219 (2006).

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, J. Ralston, "Electrowetting of ionic liquids," J. Amer. Chem. Soc. 128, 3098-3101 (2006).

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, R. L. Garrell, "Droplet-based microfluidics with nonaqueous solvents and solutions," Lab Chip 6, 199-206 (2006).

2005

T. B. Jones, "An electromechanical interpretation of electrowetting," Micromech. Microeng. 15, 1184-1187 (2005).

F. Mugele, J.-C. Baret, "Electrowetting: From basics to applications," J. Phys.: Condens. Matter 17, 707-774 (2005).

2003

R. Hayes, B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).

2001

R. Zimmermann, S. Dukhin, C. Werner, "Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions," J. Phys. Chem. B 105, 8544-8549 (2001).

Anal. Chem.

Y. S. Nanayakkara, H. Moon, T. Payagala, A. B. Wijeratne, J. A. Crank, P. S. Sharma, D. W. Armstrong, "A fundamental study on electrowetting by traditional and multifunctional ionic liquids: Possible use in electrowetting on dielectrics-based microfluidic applications," Anal. Chem. 80, 7690-7698 (2008).

Appl. Phys. Lett.

B. Sun, K. Zhou, Y. Lao, W. Cheng, J. Heikenfeld, "Scalable fabrication of electrowetting displays with self-assembled oil dosing," Appl. Phys. Lett. 91, (2007) 011106.

Chem. Phys. Chem.

S. Zhang, X. Hu, C. Qu, Q. Zhang, X. Ma, L. Lu, X. Li, X. Zhang, Y. Deng, "Enhanced and reversible contact angle modulation of ionic liquids in oil under AC electric field," Chem. Phys. Chem. 11, 2327-2331 (2010).

J. Phys. Chem. C

J. Restolho, J. L. Mata, B. Saramago, "Electrowetting of ionic liquids: Contact angle saturation and irreversibility," J. Phys. Chem. C 113, 9321-9327 (2009).

J. Adhes. Sci. Technol.

S. Chevalliot, S. Kuiper, J. Heikenfeld, "Experimental validation of the invariance of electrowetting contact angle saturation," J. Adhes. Sci. Technol. in press.

J. Amer. Chem. Soc.

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, J. Ralston, "Electrowetting of ionic liquids," J. Amer. Chem. Soc. 128, 3098-3101 (2006).

J. Micromech.Microeng.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, M. R. Johnson, "A full description of a simple and scalable fabrication process for electrowetting display," J. Micromech.Microeng. 19, 065029 (2009).

J. Phys. Chem. B

R. Zimmermann, S. Dukhin, C. Werner, "Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions," J. Phys. Chem. B 105, 8544-8549 (2001).

J. Phys.: Condens. Matter

F. Mugele, J.-C. Baret, "Electrowetting: From basics to applications," J. Phys.: Condens. Matter 17, 707-774 (2005).

J. Soc. Inf. Display

K. Blankenbach, A. Schmoll, A. Bitman, F. Bartels, D. Jerosch, "Novel highly reflective and bistable electrowetting displays," J. Soc. Inf. Display 16, 237-244 (2008).

Lab Chip

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, R. L. Garrell, "Droplet-based microfluidics with nonaqueous solvents and solutions," Lab Chip 6, 199-206 (2006).

Lab Chip

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, C.-J. Kim, "An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS," Lab Chip 6, 1213-1219 (2006).

I. Barbulovic-Nad, H. Yang, P. S. Park, A. R. Wheeler, "Digital microfluidics for cell-based assays," Lab Chip 8, 519-526 (2008).

Langmuir

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, J. Heikenfeld, "Ion and liquid dependent dielectric failure in electrowetting systems," Langmuir 25, 12387-12392 (2009).

Microfluid. Nanofluid.

R. B. Fair, "Digital microfluidics: Is a true lab-on-a-chip possible?," Microfluid. Nanofluid. 3, 245-281 (2007).

Micromech. Microeng.

T. B. Jones, "An electromechanical interpretation of electrowetting," Micromech. Microeng. 15, 1184-1187 (2005).

Mycrosyst. Technol.

H. Liu, S. Dharmatilleke, D. K. Maurya, A. A. O. Tay, "Dielectric materials for electrowetting-on-dielectric actuation," Mycrosyst. Technol. 16, 449-460 (2010).

Nat. Photon.

J. Heikenfeld, K. Zhou, E. Kreit, "Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions," Nat. Photon. 3, 292-296 (2009).

Nature

R. Hayes, B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).

Thin Solid Films

M. Dhindsa, S. Kuiper, J. Heikenfeld, "Reliable and low-voltage electrowetting on thin parylene films," Thin Solid Films 519, 3346-3351 (2011).

Other

B. Berge, "Liquid lens technology: Principle of electrowetting based lenses and applications to imaging," Proc. IEEE MEMS (2005) pp. 227-230.

Handbook of Organic Solvents (CRC, 1995).

K. A. Dean, K. Zhou, S. Smith, B. Brollier, H. Atkuri, J. Rudolph, S. Yang, S. Chevalliot, E. Kreit, J. Heikenfeld, "Electrofluidic displays: Multi-stability and display technology progress," SID Symp. Dig. (2011) pp. 111-113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.