Abstract

The real multitouch panel without ghost points is investigated using the structural patterns and an algorithm matrix of the two configurations. The pixels of patterns on the multitouch panel include virtual high and low resistances. The algorithm matrix with two configurations of equivalent circuit is derived using a voltage divider rule for array scanning. The fabrication process of structural patterns is carried out using microelectromechanical systems technology. The optical transmittance and absorbance of the multitouch panel in the UV, Vis, and IR regions are measured using a spectrophotometer. The multitouch panel, containing an array of 30 x 30, has a pixel size of 2 x 2 mm<sup>2</sup> and a pitch distance of 2 mm. The average values of high and low impedances are 53.23 and 9.3 k Ω, respectively. The maximum transmittance is about 74.2% at the wavelength of 692 nm. The multitouch panel based on high and low impedance patterns has good adjacent touch resolution for reality multitouch applications. In addition, the patterned design and the algorithm matrix provide unlimited multitouch points and avoid the ghost points.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription