Abstract

This paper presents a quality enhancement method to efficiently enhance the resolution of the scalable view window on touchable displays. Based on an optimized image interpolation algorithm, the image quality on the display systems can be enhanced. The image interpolation algorithm combines a 6-tap interpolation filter and a bilinear filter which can be effectively and efficiently optimized to reduce computational complexity. In addition, the cost-effective hardware architecture of the algorithm is also designed and implemented on an FPGA platform with a touchable display. The experimental results demonstrate the feasibility of the proposed method.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. W. K. Pratt, Digital Image Processing (Wiley, 1978).
  2. M. A. Nuno-Maganda, M. O. Arias-Estrada, "Real-time FPGA-based architecture for bicubic interpolation: An application for digital image scaling," Proc. IEEE Reconfigurable Computing and FPGAs (2005) pp. 1-8.
  3. J. H. Souk, J. Lee, "Recent picture quality enhancement technology based on human visual perception in LCD TVs," J. Display Technol. 3, 371-376 (2007).
  4. D. Lefol, D. Bull, N. Canagarajah, "Performance evaluation of transcoding algorithms for H.264," IEEE Trans. Consumer Electron. 52, 215-222 (2006).
  5. K. S. Choi, S. J. Ko, "Fast content-aware image resizing scheme in the compressed domain," IEEE Trans. Consumer Electron. 55, 1514-1521 (2009).
  6. B. D. Choi, H. Yoo, "Design of piecewise weighted linear interpolation based on even-odd decomposition and its application to image resizing," IEEE Trans. Consumer Electron. 55, 2280-2286 (2009).
  7. M. Li, T. Q. Nguyen, "Markov random field model-based edge-directed image interpolation," IEEE Trans. Image Process. 17, 1121-1128 (2008).
  8. J. W. Han, J. H. Kim, S. H. Cheon, J. O. Kim, S. J. Ko, "A novel image interpolation method using the bilateral filter," IEEE Trans. Consumer Electron. 56, 25-26 (2010).
  9. C. C. Lin, M. H. Sheu, H. K. Chiang, C. Liaw, Z. C. Wu, "The efficient VLSI design of BI-CUBIC convolution interpolation for digital image processing," Proc. IEEE ISCAS (2008) pp. 480-483.
  10. I. E. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next Generation Multimedia (Wiley, 2003).
  11. C. H. Kim, S. M. Seong, J. A. Lee, L. S. Kim, "Winscale: An image-scaling algorithm using an area pixel model," IEEE Trans. Circuits Syst. Video Technol. 13, 549-553 (2003).
  12. S. Ramachandran, S. Srinivasan, "Design and FPGA implementation of a video scalar with on-chip reduced memory utilization," Proc. IEEE Euromicro Symp. on Digital Syst. Des. (2003) pp. 206-213.

2010 (1)

J. W. Han, J. H. Kim, S. H. Cheon, J. O. Kim, S. J. Ko, "A novel image interpolation method using the bilateral filter," IEEE Trans. Consumer Electron. 56, 25-26 (2010).

2009 (2)

K. S. Choi, S. J. Ko, "Fast content-aware image resizing scheme in the compressed domain," IEEE Trans. Consumer Electron. 55, 1514-1521 (2009).

B. D. Choi, H. Yoo, "Design of piecewise weighted linear interpolation based on even-odd decomposition and its application to image resizing," IEEE Trans. Consumer Electron. 55, 2280-2286 (2009).

2008 (1)

M. Li, T. Q. Nguyen, "Markov random field model-based edge-directed image interpolation," IEEE Trans. Image Process. 17, 1121-1128 (2008).

2007 (1)

J. H. Souk, J. Lee, "Recent picture quality enhancement technology based on human visual perception in LCD TVs," J. Display Technol. 3, 371-376 (2007).

2006 (1)

D. Lefol, D. Bull, N. Canagarajah, "Performance evaluation of transcoding algorithms for H.264," IEEE Trans. Consumer Electron. 52, 215-222 (2006).

2003 (1)

C. H. Kim, S. M. Seong, J. A. Lee, L. S. Kim, "Winscale: An image-scaling algorithm using an area pixel model," IEEE Trans. Circuits Syst. Video Technol. 13, 549-553 (2003).

IEEE Trans. Circuits Syst. Video Technol. (1)

C. H. Kim, S. M. Seong, J. A. Lee, L. S. Kim, "Winscale: An image-scaling algorithm using an area pixel model," IEEE Trans. Circuits Syst. Video Technol. 13, 549-553 (2003).

IEEE Trans. Image Process. (1)

M. Li, T. Q. Nguyen, "Markov random field model-based edge-directed image interpolation," IEEE Trans. Image Process. 17, 1121-1128 (2008).

IEEE Trans. Consumer Electron. (2)

J. W. Han, J. H. Kim, S. H. Cheon, J. O. Kim, S. J. Ko, "A novel image interpolation method using the bilateral filter," IEEE Trans. Consumer Electron. 56, 25-26 (2010).

K. S. Choi, S. J. Ko, "Fast content-aware image resizing scheme in the compressed domain," IEEE Trans. Consumer Electron. 55, 1514-1521 (2009).

IEEE Trans. Consumer Electron. (2)

B. D. Choi, H. Yoo, "Design of piecewise weighted linear interpolation based on even-odd decomposition and its application to image resizing," IEEE Trans. Consumer Electron. 55, 2280-2286 (2009).

D. Lefol, D. Bull, N. Canagarajah, "Performance evaluation of transcoding algorithms for H.264," IEEE Trans. Consumer Electron. 52, 215-222 (2006).

J. Display Technol. (1)

J. H. Souk, J. Lee, "Recent picture quality enhancement technology based on human visual perception in LCD TVs," J. Display Technol. 3, 371-376 (2007).

Other (5)

W. K. Pratt, Digital Image Processing (Wiley, 1978).

M. A. Nuno-Maganda, M. O. Arias-Estrada, "Real-time FPGA-based architecture for bicubic interpolation: An application for digital image scaling," Proc. IEEE Reconfigurable Computing and FPGAs (2005) pp. 1-8.

C. C. Lin, M. H. Sheu, H. K. Chiang, C. Liaw, Z. C. Wu, "The efficient VLSI design of BI-CUBIC convolution interpolation for digital image processing," Proc. IEEE ISCAS (2008) pp. 480-483.

I. E. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next Generation Multimedia (Wiley, 2003).

S. Ramachandran, S. Srinivasan, "Design and FPGA implementation of a video scalar with on-chip reduced memory utilization," Proc. IEEE Euromicro Symp. on Digital Syst. Des. (2003) pp. 206-213.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.