Abstract

A high heat dissipation material (copper, Cu) was employed as the substrate for top emission organic light-emitting diodes (TEOLEDs). The UV glue was spin-coated onto the Cu substrate as the insulation layer to effectively improve Cu surface roughness and reduce process complexity. From the optoelectronic results, the optimized device with the Cu substrate shows the maximum luminance of 14110 $\hbox{cd/m} ^{2}$ and luminance efficiency of 7.14 cd/A. The surface and junction temperatures are measured to discuss the heat-dissipating effect on device performance. From the results, TEOLED fabricated on a Cu substrate has lower junction (55.34 $^{\circ}\hbox{C}$) and surface (25.7 $ ^{\circ}\hbox{C}$) temperatures, with the lifetime extended seven times. We employed Cu foil as the substrate for flexible TEOLED with maximum luminance of 10310 $\hbox{cd/m} ^{2}$ and luminance efficiency of 7.3 cd/A obtained.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987).
  2. M. Kitamura, T. Imada, Y. Arakawa, "Organic light-emitting diodes driven by pentacene-based thin-film transistors," Appl. Phys. Lett. 83, 3410-3412 (2003).
  3. D. Pribat, F. Plais, "Matrix addressing for organic electroluminescent displays," Thin Solid Films 383, 25-30 (2001).
  4. C. Y. Ho, R. W. Powell, P. E. Liley, "Thermal conductivity of the elements," J. Phys. Chem. Ref. Data 1, 279 (1972).
  5. C. R. Tsai, Y. S. Tsai, F. S. Juang, P. H. Yeh, Y. C. Chen, C. C. Liu, "Top emission organic light-emitting diodes with double-metal-layer anode," Jpn. J. Appl. Phys. 46, 2727-2730 (2007).
  6. Y. Xi, E. F. Schubert, "Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Appl. Phys. Lett. 85, 2163-2165 (2004).
  7. T. K. Chuang, M. Troccoli, P. C. Kuo, A. J. Roudbari, M. K. Hatalis, I. Biaggio, A. T. Voutsas, "Top-emitting 230 dots/in. active-matrix polymer light-emitting diode displays on flexible metal foil substrates," Appl. Phys. Lett. 90, 151114 (2007).
  8. S. D. Theiss, S. Wagner, "Amorphous silicon thin-film transistors on steel foil substrates," IEEE Electron Device Lett. 17, 578-580 (1996).
  9. M. Wu, K. Pangal, J. C. Sturm, S. Wagner, "High electron mobility polycrystalline silicon thin-film transistors on steel foil substrates," Appl. Phys. Lett. 75, 2244-2246 (1999).
  10. C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, S. R. Forrest, "Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates," IEEE Electron Device Lett. 18, 609-612 (1997).
  11. S. J. Chung, J. H. Lee, J. W. Jeong, J. J. Kim, Y. T. Hong, "Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes," Appl. Phys. Lett. 94, 253302-1-3 (2009).
  12. J. G. Webster, The Measurement Instrumentation and Sensor Handbook Boca RatonFLCRC/IEEE (CRC/IEEE, 1999).
  13. B. Siegal, "Measurement of junction temperature confirms package thermal design," Laser Focus World 39, (2003).
  14. Y. S. Tsai, S. H. Wang, C. H. Chen, C. L. Cheng, T. C. Liao, "Using copper substrate to enhance the thermal conductivity of top-emission organic light-emitting diodes for improving the luminance efficiency and lifetime," Appl. Phys. Lett. 95, 233306-1-233306-3 (2009).

2009

S. J. Chung, J. H. Lee, J. W. Jeong, J. J. Kim, Y. T. Hong, "Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes," Appl. Phys. Lett. 94, 253302-1-3 (2009).

Y. S. Tsai, S. H. Wang, C. H. Chen, C. L. Cheng, T. C. Liao, "Using copper substrate to enhance the thermal conductivity of top-emission organic light-emitting diodes for improving the luminance efficiency and lifetime," Appl. Phys. Lett. 95, 233306-1-233306-3 (2009).

2007

C. R. Tsai, Y. S. Tsai, F. S. Juang, P. H. Yeh, Y. C. Chen, C. C. Liu, "Top emission organic light-emitting diodes with double-metal-layer anode," Jpn. J. Appl. Phys. 46, 2727-2730 (2007).

T. K. Chuang, M. Troccoli, P. C. Kuo, A. J. Roudbari, M. K. Hatalis, I. Biaggio, A. T. Voutsas, "Top-emitting 230 dots/in. active-matrix polymer light-emitting diode displays on flexible metal foil substrates," Appl. Phys. Lett. 90, 151114 (2007).

2004

Y. Xi, E. F. Schubert, "Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Appl. Phys. Lett. 85, 2163-2165 (2004).

2003

M. Kitamura, T. Imada, Y. Arakawa, "Organic light-emitting diodes driven by pentacene-based thin-film transistors," Appl. Phys. Lett. 83, 3410-3412 (2003).

B. Siegal, "Measurement of junction temperature confirms package thermal design," Laser Focus World 39, (2003).

2001

D. Pribat, F. Plais, "Matrix addressing for organic electroluminescent displays," Thin Solid Films 383, 25-30 (2001).

1999

M. Wu, K. Pangal, J. C. Sturm, S. Wagner, "High electron mobility polycrystalline silicon thin-film transistors on steel foil substrates," Appl. Phys. Lett. 75, 2244-2246 (1999).

1997

C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, S. R. Forrest, "Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates," IEEE Electron Device Lett. 18, 609-612 (1997).

1996

S. D. Theiss, S. Wagner, "Amorphous silicon thin-film transistors on steel foil substrates," IEEE Electron Device Lett. 17, 578-580 (1996).

1987

C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987).

1972

C. Y. Ho, R. W. Powell, P. E. Liley, "Thermal conductivity of the elements," J. Phys. Chem. Ref. Data 1, 279 (1972).

Appl. Phys. Lett.

C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987).

M. Kitamura, T. Imada, Y. Arakawa, "Organic light-emitting diodes driven by pentacene-based thin-film transistors," Appl. Phys. Lett. 83, 3410-3412 (2003).

Y. Xi, E. F. Schubert, "Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Appl. Phys. Lett. 85, 2163-2165 (2004).

T. K. Chuang, M. Troccoli, P. C. Kuo, A. J. Roudbari, M. K. Hatalis, I. Biaggio, A. T. Voutsas, "Top-emitting 230 dots/in. active-matrix polymer light-emitting diode displays on flexible metal foil substrates," Appl. Phys. Lett. 90, 151114 (2007).

M. Wu, K. Pangal, J. C. Sturm, S. Wagner, "High electron mobility polycrystalline silicon thin-film transistors on steel foil substrates," Appl. Phys. Lett. 75, 2244-2246 (1999).

S. J. Chung, J. H. Lee, J. W. Jeong, J. J. Kim, Y. T. Hong, "Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes," Appl. Phys. Lett. 94, 253302-1-3 (2009).

Y. S. Tsai, S. H. Wang, C. H. Chen, C. L. Cheng, T. C. Liao, "Using copper substrate to enhance the thermal conductivity of top-emission organic light-emitting diodes for improving the luminance efficiency and lifetime," Appl. Phys. Lett. 95, 233306-1-233306-3 (2009).

IEEE Electron Device Lett.

C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, S. R. Forrest, "Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates," IEEE Electron Device Lett. 18, 609-612 (1997).

S. D. Theiss, S. Wagner, "Amorphous silicon thin-film transistors on steel foil substrates," IEEE Electron Device Lett. 17, 578-580 (1996).

J. Phys. Chem. Ref. Data

C. Y. Ho, R. W. Powell, P. E. Liley, "Thermal conductivity of the elements," J. Phys. Chem. Ref. Data 1, 279 (1972).

Jpn. J. Appl. Phys.

C. R. Tsai, Y. S. Tsai, F. S. Juang, P. H. Yeh, Y. C. Chen, C. C. Liu, "Top emission organic light-emitting diodes with double-metal-layer anode," Jpn. J. Appl. Phys. 46, 2727-2730 (2007).

Laser Focus World

B. Siegal, "Measurement of junction temperature confirms package thermal design," Laser Focus World 39, (2003).

Thin Solid Films

D. Pribat, F. Plais, "Matrix addressing for organic electroluminescent displays," Thin Solid Films 383, 25-30 (2001).

Other

J. G. Webster, The Measurement Instrumentation and Sensor Handbook Boca RatonFLCRC/IEEE (CRC/IEEE, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.