Abstract

Field-sequential color (FSC) is a high optical throughput technique for future green liquid crystal displays (LCDs). However, the FSC-LCD faces a lethal issue, color breakup (CBU) which degrades image clarity and prevents high level LCD-TV productions. We proposed the “180 Hz Stencil Field-Sequential-Color” method to redistribute intensities of the three primary color field-images to suppress CBU. By applying local color-backlight-dimming technology to FSC-LCDs, a low resolution colorful backlight panel combined with a high resolution color filter-less LC panel generated a “green-based multi-color” field-image which showed the most image luminance in the first field. Therefore, residual red and blue field-image intensities were reduced and effectively suppressed CBU when compared to field-rate increasing methods. In addition, to further implement hardware, the number of backlight divisions of 32$\times$24 and a proper Gaussian point spread function profile were optimized via simulations while considering CBU reduction and image fidelity. Using optimized hardware parameters, the CBU phenomenon was suppressed by 50% of traditional RGB driving in simulation and was demonstrated on a 120 Hz 46-inch MVA LCD-TV.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription