Abstract

We systematically study and optimize the design of multilayer birefringent reflective polarizers for recycling the backlight of liquid crystal displays. Factors affecting the Bragg reflection are analyzed in detail, including number of layers for establishing Bragg reflection, refractive index difference, effective refractive index, and thickness ratio. Different methods for achieving broadband reflection are investigated, so that the reflective polarizer could cover the entire visible wavelengths and a large incident angle. In addition, the effects of material dispersion on the device design are analyzed.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. K. Yang, S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  2. G. R. Bird, M. Parrish, Jr."Wire grid as a near-infrared polarizer," J. Opt. Soc. Am. 50, 886-891 (1960).
  3. J. Wang, F. Walters, X. Liu, P. Sciortino, X. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 061104-1-061104-3 (2007).
  4. S. H. Kim, J. D. Park, K. D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).
  5. Z. Ge, S. T. Wu, "Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays," Appl. Phys. Lett. 93, 121104-1-121104-3 (2008).
  6. X. Yang, Y. Yan, G. Jin, "Polarized light-guide plate for liquid crystal display," Opt. Express 13, 8349-8356 (2005).
  7. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451-2456 (2000).
  8. J. M. Jonza, M. F. Weber, A. J. Ouderkirk, C. A. Stover, Polarizing Beam-Splitting Optical Component U.S. Patent, 5962114 (1999).
  9. D. W. Berreman, "Optics in stratified and anisotropic media: 4 $\times$ 4 matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
  10. Y. H. Huang, T. X. Wu, S. T. Wu, "Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 $\times$ 4 matrix method," J. Appl. Phys. 93, 2490-2495 (2003).
  11. S. T. Wu, C. S. Wu, M. Warenghem, M. Ismaili, "Refractive index dispersions of liquid crystals," Opt. Eng. 32, 1775-1780 (1993).
  12. J. Li, S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
  13. J. Li, S. T. Wu, "Two-coefficient Cauchy model for low birefringence liquid crystals," J. Appl. Phys. 96, 170-174 (2004).
  14. S. T. Wu, "Phase-matched compensation films for liquid crystal displays," J. Materials Chem. Phys. 42, 163-168 (1995).
  15. J. Li, G. Baird, Y. H. Lin, H. Ren, S. T. Wu, "Refractive-index matching between liquid crystals and photopolymers," J. Soc. Info. Display 13, 1017-1026 (2005).
  16. R. C. Allen, L. W. Carlson, A. J. Ouderkirk, M. F. Weber, A. L. Kotz, T. J. Nevitt, C. A. Stover, B. Majumdar, Brightness Enhancement Film U.S. Patent, 6760157 (2004).
  17. Q. Hong, T. X. Wu, S. T. Wu, "Optical wave propagation in a cholesteric liquid crystal using the finite element method," Liq. Cryst. 30, 367-375 (2003).

2008 (1)

Z. Ge, S. T. Wu, "Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays," Appl. Phys. Lett. 93, 121104-1-121104-3 (2008).

2007 (1)

J. Wang, F. Walters, X. Liu, P. Sciortino, X. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 061104-1-061104-3 (2007).

2006 (1)

S. H. Kim, J. D. Park, K. D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).

2005 (2)

X. Yang, Y. Yan, G. Jin, "Polarized light-guide plate for liquid crystal display," Opt. Express 13, 8349-8356 (2005).

J. Li, G. Baird, Y. H. Lin, H. Ren, S. T. Wu, "Refractive-index matching between liquid crystals and photopolymers," J. Soc. Info. Display 13, 1017-1026 (2005).

2004 (2)

J. Li, S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).

J. Li, S. T. Wu, "Two-coefficient Cauchy model for low birefringence liquid crystals," J. Appl. Phys. 96, 170-174 (2004).

2003 (2)

Q. Hong, T. X. Wu, S. T. Wu, "Optical wave propagation in a cholesteric liquid crystal using the finite element method," Liq. Cryst. 30, 367-375 (2003).

Y. H. Huang, T. X. Wu, S. T. Wu, "Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 $\times$ 4 matrix method," J. Appl. Phys. 93, 2490-2495 (2003).

2000 (1)

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451-2456 (2000).

1995 (1)

S. T. Wu, "Phase-matched compensation films for liquid crystal displays," J. Materials Chem. Phys. 42, 163-168 (1995).

1993 (1)

S. T. Wu, C. S. Wu, M. Warenghem, M. Ismaili, "Refractive index dispersions of liquid crystals," Opt. Eng. 32, 1775-1780 (1993).

1972 (1)

1960 (1)

Appl. Phys. Lett. (2)

J. Wang, F. Walters, X. Liu, P. Sciortino, X. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 061104-1-061104-3 (2007).

Z. Ge, S. T. Wu, "Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays," Appl. Phys. Lett. 93, 121104-1-121104-3 (2008).

J. Appl. Phys. (3)

J. Li, S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).

J. Li, S. T. Wu, "Two-coefficient Cauchy model for low birefringence liquid crystals," J. Appl. Phys. 96, 170-174 (2004).

Y. H. Huang, T. X. Wu, S. T. Wu, "Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 $\times$ 4 matrix method," J. Appl. Phys. 93, 2490-2495 (2003).

J. Materials Chem. Phys. (1)

S. T. Wu, "Phase-matched compensation films for liquid crystal displays," J. Materials Chem. Phys. 42, 163-168 (1995).

J. Opt. Soc. Am. (2)

J. Soc. Info. Display (1)

J. Li, G. Baird, Y. H. Lin, H. Ren, S. T. Wu, "Refractive-index matching between liquid crystals and photopolymers," J. Soc. Info. Display 13, 1017-1026 (2005).

Liq. Cryst. (1)

Q. Hong, T. X. Wu, S. T. Wu, "Optical wave propagation in a cholesteric liquid crystal using the finite element method," Liq. Cryst. 30, 367-375 (2003).

Nanotechnology (1)

S. H. Kim, J. D. Park, K. D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).

Opt. Eng. (1)

S. T. Wu, C. S. Wu, M. Warenghem, M. Ismaili, "Refractive index dispersions of liquid crystals," Opt. Eng. 32, 1775-1780 (1993).

Opt. Express (1)

Science (1)

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451-2456 (2000).

Other (3)

J. M. Jonza, M. F. Weber, A. J. Ouderkirk, C. A. Stover, Polarizing Beam-Splitting Optical Component U.S. Patent, 5962114 (1999).

D. K. Yang, S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

R. C. Allen, L. W. Carlson, A. J. Ouderkirk, M. F. Weber, A. L. Kotz, T. J. Nevitt, C. A. Stover, B. Majumdar, Brightness Enhancement Film U.S. Patent, 6760157 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.