Abstract

In this work, we propose a novel active-matrix organic light-emitting diode displays (AMOLED) pixel circuit based on organic thin-film transistor (OTFT) architecture, which consisted of four switches, one driving transistor, and a capacitor. The pentacene-based OTFT device possesses a field-effect mobility of 0.1 ${\hbox{cm}}^{2} /{\hbox{V}}\cdot{\hbox{s}}$, a threshold voltage of $-{\hbox{1.5}}~{\hbox{V}}$, subthreshold slope of 1.8 V/decade and an on/off current ratio ${\hbox{10}} ^{6}$. The resultant voltage-driving pixel circuit, named “Complementary Voltage-Induced Coupling Driving” (CVICD), is different from the current-driving scheme and can appropriately operate at low gray level for the low-mobility OTFT circuitry. The current non-uniformity less than 2.9% is achieved for data voltage ranging from 1 to 17 V by SPICE simulation work. In addition, the new external driving method can effectively reduce the complexity of OLED pixel circuitry.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription