Abstract

Transparent conductive oxides are promising candidates for realization of transparent electronics for display applications. The use of solution-processing techniques allows for a dramatic reduction in cost per unit area of electronic functionality. As a result, there is tremendous interest in the use of solution-processed transparent conductive oxides for realization of low-cost transparent electronic systems. Zinc oxide is processable out of solution using a variety of routes, including the use of nanoparticles, nanowires, and chemical bath deposition. By optimizing the deposition processes, it is possible to realize solution-processed transparent semiconductor films offering performance that is comparable to or better than amorphous silicon, while offering the advantages of transparency. Here, techniques for fabrication of solution-processed ZnO-based transistors are reviewed, and the outlook for such technologies is discussed.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. V. Subramanian, J. M. J. Fréchet, P. C. Chang, D. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, S. K. Volkman, "Progress towards development of all-printed RFID tags: Materials, processes, and devices," Proc. IEEE 93, 1330-1338 (2005).
  2. D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, "Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics," J. Electrochem. Soc. 150, 412-417 (2003).
  3. D. Redinger, R. Farshchi, V. Subramanian, "An ink-jet-deposited passive component process for RFID," IEEE Trans. Electron Devices 51, 1978-1983 (2004).
  4. S. K. Volkman, Y. Pei, D. Redinger, S. Yin, V. Subramanian, "Ink-jetted silver/copper conductors for printed RFID applications," Flexible Electronics 2004—Materials and Device Technology (2004).
  5. N. S. Pesika, Z. Hu, K. J. Stebe, P. C. Searson, "Quenching of growth of ZnO nanoparticles by adsorption of octanethiol," J. Phys. Chem. B 106, 6985-6990 (2002).
  6. M. Shim, P. Guyot-Sionnest, "Organic-capped ZnO nanocrystals: Synthesis and n-type character," J. Amer. Chem. Soc. 123, 11651-11654 (2001).
  7. Z. Hu, D. J. E. Ramirez, H. E. H. Cerveva, G. Oskam, P. C. Searson, "Synthesis of ZnO nanoparticles in 2-Proponol by reaction with water," J. Phys. Chem. B. 109, 11209-11214 (2005).
  8. R. Viswanathan, S. Sapra, S. S. Gupta, B. Satpati, P. V. Satyam, B. N. Dev, D. D. Sarma, "Synthesis and characterization of Mn-doped ZnO nanocrystals," J. Phys. Chem. B 108, 6303-6310 (2004).
  9. S. K. Volkman, S. E. Molesa, J. B. Lee, B. A. Mattis, A. de la Fuente Vornbrock, T. Bakhishev, V. Subramanian, "A novel transparent air-stable printable n-type semiconductor technology using ZnO nanoparticles," 2004 IEEE Int. Electron Devices Meeting Tech. Dig. pp. 769-772.
  10. B. Sun, H. Sirringhaus, "Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods," Nano Lett. 5, 2408-2413 (2005).
  11. T. Bakhishev, S. K. Volkman, V. Subramanian, "Solution-processed ZnO nanowire-network thin film transistors for transparent electronics," 2005 Mater. Res. Soc. Fall Symp. (2005).
  12. D. Redinger, V. Subramanian, "High-performance chemical-bath-deposited zinc oxide thin-film transistors," IEEE Trans. Electron Devices 54, 1301-1307 (2007).
  13. H.-C. Cheng, C.-F. Chen, C.-Y. Tsay, "Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method," Appl. Phys. Lett. 90, 012113 (2007).
  14. B. J. Norris, J. Anderson, J. F. Wager, D. A. Keszler, "Spin-coated zinc oxide transparent transistors," J. Phys. D: Appl. Phys. 36, L105-L107 (2003).

2007 (2)

D. Redinger, V. Subramanian, "High-performance chemical-bath-deposited zinc oxide thin-film transistors," IEEE Trans. Electron Devices 54, 1301-1307 (2007).

H.-C. Cheng, C.-F. Chen, C.-Y. Tsay, "Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method," Appl. Phys. Lett. 90, 012113 (2007).

2005 (3)

Z. Hu, D. J. E. Ramirez, H. E. H. Cerveva, G. Oskam, P. C. Searson, "Synthesis of ZnO nanoparticles in 2-Proponol by reaction with water," J. Phys. Chem. B. 109, 11209-11214 (2005).

V. Subramanian, J. M. J. Fréchet, P. C. Chang, D. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, S. K. Volkman, "Progress towards development of all-printed RFID tags: Materials, processes, and devices," Proc. IEEE 93, 1330-1338 (2005).

B. Sun, H. Sirringhaus, "Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods," Nano Lett. 5, 2408-2413 (2005).

2004 (2)

D. Redinger, R. Farshchi, V. Subramanian, "An ink-jet-deposited passive component process for RFID," IEEE Trans. Electron Devices 51, 1978-1983 (2004).

R. Viswanathan, S. Sapra, S. S. Gupta, B. Satpati, P. V. Satyam, B. N. Dev, D. D. Sarma, "Synthesis and characterization of Mn-doped ZnO nanocrystals," J. Phys. Chem. B 108, 6303-6310 (2004).

2003 (2)

B. J. Norris, J. Anderson, J. F. Wager, D. A. Keszler, "Spin-coated zinc oxide transparent transistors," J. Phys. D: Appl. Phys. 36, L105-L107 (2003).

D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, "Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics," J. Electrochem. Soc. 150, 412-417 (2003).

2002 (1)

N. S. Pesika, Z. Hu, K. J. Stebe, P. C. Searson, "Quenching of growth of ZnO nanoparticles by adsorption of octanethiol," J. Phys. Chem. B 106, 6985-6990 (2002).

2001 (1)

M. Shim, P. Guyot-Sionnest, "Organic-capped ZnO nanocrystals: Synthesis and n-type character," J. Amer. Chem. Soc. 123, 11651-11654 (2001).

Appl. Phys. Lett. (1)

H.-C. Cheng, C.-F. Chen, C.-Y. Tsay, "Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method," Appl. Phys. Lett. 90, 012113 (2007).

IEEE Trans. Electron Devices (2)

D. Redinger, V. Subramanian, "High-performance chemical-bath-deposited zinc oxide thin-film transistors," IEEE Trans. Electron Devices 54, 1301-1307 (2007).

D. Redinger, R. Farshchi, V. Subramanian, "An ink-jet-deposited passive component process for RFID," IEEE Trans. Electron Devices 51, 1978-1983 (2004).

J. Amer. Chem. Soc. (1)

M. Shim, P. Guyot-Sionnest, "Organic-capped ZnO nanocrystals: Synthesis and n-type character," J. Amer. Chem. Soc. 123, 11651-11654 (2001).

J. Electrochem. Soc. (1)

D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, "Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics," J. Electrochem. Soc. 150, 412-417 (2003).

J. Phys. Chem. B (2)

R. Viswanathan, S. Sapra, S. S. Gupta, B. Satpati, P. V. Satyam, B. N. Dev, D. D. Sarma, "Synthesis and characterization of Mn-doped ZnO nanocrystals," J. Phys. Chem. B 108, 6303-6310 (2004).

N. S. Pesika, Z. Hu, K. J. Stebe, P. C. Searson, "Quenching of growth of ZnO nanoparticles by adsorption of octanethiol," J. Phys. Chem. B 106, 6985-6990 (2002).

J. Phys. Chem. B. (1)

Z. Hu, D. J. E. Ramirez, H. E. H. Cerveva, G. Oskam, P. C. Searson, "Synthesis of ZnO nanoparticles in 2-Proponol by reaction with water," J. Phys. Chem. B. 109, 11209-11214 (2005).

J. Phys. D: Appl. Phys. (1)

B. J. Norris, J. Anderson, J. F. Wager, D. A. Keszler, "Spin-coated zinc oxide transparent transistors," J. Phys. D: Appl. Phys. 36, L105-L107 (2003).

Nano Lett. (1)

B. Sun, H. Sirringhaus, "Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods," Nano Lett. 5, 2408-2413 (2005).

Proc. IEEE (1)

V. Subramanian, J. M. J. Fréchet, P. C. Chang, D. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, S. K. Volkman, "Progress towards development of all-printed RFID tags: Materials, processes, and devices," Proc. IEEE 93, 1330-1338 (2005).

Other (3)

S. K. Volkman, Y. Pei, D. Redinger, S. Yin, V. Subramanian, "Ink-jetted silver/copper conductors for printed RFID applications," Flexible Electronics 2004—Materials and Device Technology (2004).

S. K. Volkman, S. E. Molesa, J. B. Lee, B. A. Mattis, A. de la Fuente Vornbrock, T. Bakhishev, V. Subramanian, "A novel transparent air-stable printable n-type semiconductor technology using ZnO nanoparticles," 2004 IEEE Int. Electron Devices Meeting Tech. Dig. pp. 769-772.

T. Bakhishev, S. K. Volkman, V. Subramanian, "Solution-processed ZnO nanowire-network thin film transistors for transparent electronics," 2005 Mater. Res. Soc. Fall Symp. (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.