Abstract

With increasing capability and complexity of surgical interventions, intra-operative visualization is becoming an important part of a surgical environment. This paper reviews some of our recent progress in the intelligent use of pre- and intra-operative data for enhanced surgical navigation and motion compensated visualization. High fidelity augmented reality (AR) with enhanced 3D depth perception is proposed to provide effective surgical guidance. To cater for large scale tissue deformation, real-time depth recovery based on stereo disparity and eye gaze tracking is introduced. This allows the development of motion compensated visualization for improved visual perception and for facilitating motion adaptive AR displays. The discussion of the paper is focused on how to ensure perceptual fidelity of AR and the need for real-time tissue deformation recovery and modeling, as well as the importance of incorporating human perceptual factors in surgical displays.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription