Abstract

We propose a field-emission device surrounded by high-k dielectric (FESH) that used a Spindt-type emitter; its design guidelines are demonstrated using various device parameters. The most significant aspect of the FESH structure is its use of high-k dielectric material to surround the emitter. The large dielectric constant of the high-k dielectric dramatically reduces the threshold voltage when applying dc voltage. It is shown that the most suitable device parameters can be extracted from the viewpoint of figure-of-merit. When dc voltage is applied to a FESH device, a large transient current flows between the anode and the cathode. The application of an ac voltage eliminates the current leakage that would otherwise hinder the development of practical applications such as displays. It is demonstrated from dynamic simulations that sinusoidal input pulses should be applied to FESH devices rather than rectangular input pulses since the former realizes the benefits of low-power operation and high reliability.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription