Abstract

We propose a field-emission device surrounded by high-k dielectric (FESH) that used a Spindt-type emitter; its design guidelines are demonstrated using various device parameters. The most significant aspect of the FESH structure is its use of high-k dielectric material to surround the emitter. The large dielectric constant of the high-k dielectric dramatically reduces the threshold voltage when applying dc voltage. It is shown that the most suitable device parameters can be extracted from the viewpoint of figure-of-merit. When dc voltage is applied to a FESH device, a large transient current flows between the anode and the cathode. The application of an ac voltage eliminates the current leakage that would otherwise hinder the development of practical applications such as displays. It is demonstrated from dynamic simulations that sinusoidal input pulses should be applied to FESH devices rather than rectangular input pulses since the former realizes the benefits of low-power operation and high reliability.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. S. Itoh, M. Tanaka, "Current status of field-emission display," Proc. IEEE 90, 514-520 (2002).
  2. H. F. Grey, G. J. Campisi, R. F. Greene, "A vacuum field effect transistor using silicon field emitter arrays," IEDM Tech. Dig. (1986) pp. 776-779.
  3. D. G. Pflug, M. Schattenburg, H. I. Smith, A. I. Akinwande, "Field emitter arrays for low voltage applications with sub 100 nm apertures and 200 nm period," IEDM Tech. Dig. (2001) pp. 179-182.
  4. C. A. Spindt, I. Brodie, L. Humphrey, E. R. Westerberg, "Physical properties of thin film field emission cathodes," J. Appl. Phys. 47, 5248-5263 (1976).
  5. W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V. T. Binh, O. Groening, "Carbon nanotubes as field emission sources," J. Mater. Chem. 14, 933-943 (2004).
  6. T. Komoda, "Nanocrystalline-silicon-based ballistic electron surface-emitting device (BSD) and its application to flat panel displays," OYO BUTURI 72, 1532-1535 (2003).
  7. Y. S. Kim, Y. G. Kim, D. I. Kim, J. G. Kang, S. O. Kang, E. H. Choi, G. Cho, "Influence of inertial force on electron trajectories in the surface conduction electron emitter displays," Jpn. J. Appl. Phys. 39, 2L684-L686 (2000).
  8. J. E. Pogemiller, H. H. Busta, B. J. Zimmerman, "Gated chromium volcano emitters," J. Vac. Sci. Technol. B 12, 680-684 (1994).
  9. M. Suzuki, T. Kusunoki, M. Sagawa, K. Tsuji, "Field-Emission display based on nonformed MIM-cathode array," IEEE Trans. Electron Devices 49, 1005-1011 (2002).
  10. M. Kasu, N. Kobayashi, "Large and stable field-emission current from heavily Si-doped AlN grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 76, 2910-2912 (2000).
  11. S. Funakawa, H. Luo, C. Kimura, T. Sugino, "Electron field emission from boron nitride nanofilm synthesized by plasma-assisted chemical vapor deposition," 10th Int. Display Workshop (IDW '03) (2003) pp. 1215-1218.
  12. W. Zhu, C. Bower, G. P. Kochanski, S. Jin, "Electron field emission from nanostructured diamond and carbon nanotubes," Solid-State Electron. 45, 921-928 (2001).
  13. L. R. C. Fonseca, P. von Allmen, R. Ramprasad, "Numerical simulation of the tunneling current and ballistic electron effects in field emission devices," J. Appl. Phys. 87, 2533-2541 (2000).
  14. H. G. Kosmahl, "Analytic evaluation of field emission enhancement factors for ellipsoidal cones and elliptic cross-section wedges," IEEE Trans. Electron Devices 38, 1534-1537 (1991).
  15. Synopsis Inc.Mountain ViewCADESSIS and GENESISe TCAD Ver. 7.5 (2001).
  16. K. Matsumoto, S. Kinosita, Y. Gotoh, T. Uchiyama, S. Manalis, C. Quate, "Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition," Appl. Phys. Lett. 78, 539-540 (2001).
  17. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, "Scanning field emission from patterned carbon nanotube films," Appl. Phys. Lett. 76, 2071-2073 (2000).

Appl. Phys. Lett. (2)

K. Matsumoto, S. Kinosita, Y. Gotoh, T. Uchiyama, S. Manalis, C. Quate, "Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition," Appl. Phys. Lett. 78, 539-540 (2001).

L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, "Scanning field emission from patterned carbon nanotube films," Appl. Phys. Lett. 76, 2071-2073 (2000).

Appl. Phys. Lett. (1)

M. Kasu, N. Kobayashi, "Large and stable field-emission current from heavily Si-doped AlN grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 76, 2910-2912 (2000).

IEEE Trans. Electron Devices (2)

M. Suzuki, T. Kusunoki, M. Sagawa, K. Tsuji, "Field-Emission display based on nonformed MIM-cathode array," IEEE Trans. Electron Devices 49, 1005-1011 (2002).

H. G. Kosmahl, "Analytic evaluation of field emission enhancement factors for ellipsoidal cones and elliptic cross-section wedges," IEEE Trans. Electron Devices 38, 1534-1537 (1991).

J. Appl. Phys. (1)

L. R. C. Fonseca, P. von Allmen, R. Ramprasad, "Numerical simulation of the tunneling current and ballistic electron effects in field emission devices," J. Appl. Phys. 87, 2533-2541 (2000).

J. Vac. Sci. Technol. B (1)

J. E. Pogemiller, H. H. Busta, B. J. Zimmerman, "Gated chromium volcano emitters," J. Vac. Sci. Technol. B 12, 680-684 (1994).

J. Appl. Phys. (1)

C. A. Spindt, I. Brodie, L. Humphrey, E. R. Westerberg, "Physical properties of thin film field emission cathodes," J. Appl. Phys. 47, 5248-5263 (1976).

J. Mater. Chem. (1)

W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V. T. Binh, O. Groening, "Carbon nanotubes as field emission sources," J. Mater. Chem. 14, 933-943 (2004).

Jpn. J. Appl. Phys. (1)

Y. S. Kim, Y. G. Kim, D. I. Kim, J. G. Kang, S. O. Kang, E. H. Choi, G. Cho, "Influence of inertial force on electron trajectories in the surface conduction electron emitter displays," Jpn. J. Appl. Phys. 39, 2L684-L686 (2000).

OYO BUTURI (1)

T. Komoda, "Nanocrystalline-silicon-based ballistic electron surface-emitting device (BSD) and its application to flat panel displays," OYO BUTURI 72, 1532-1535 (2003).

Proc. IEEE (1)

S. Itoh, M. Tanaka, "Current status of field-emission display," Proc. IEEE 90, 514-520 (2002).

Solid-State Electron. (1)

W. Zhu, C. Bower, G. P. Kochanski, S. Jin, "Electron field emission from nanostructured diamond and carbon nanotubes," Solid-State Electron. 45, 921-928 (2001).

Other (4)

Synopsis Inc.Mountain ViewCADESSIS and GENESISe TCAD Ver. 7.5 (2001).

H. F. Grey, G. J. Campisi, R. F. Greene, "A vacuum field effect transistor using silicon field emitter arrays," IEDM Tech. Dig. (1986) pp. 776-779.

D. G. Pflug, M. Schattenburg, H. I. Smith, A. I. Akinwande, "Field emitter arrays for low voltage applications with sub 100 nm apertures and 200 nm period," IEDM Tech. Dig. (2001) pp. 179-182.

S. Funakawa, H. Luo, C. Kimura, T. Sugino, "Electron field emission from boron nitride nanofilm synthesized by plasma-assisted chemical vapor deposition," 10th Int. Display Workshop (IDW '03) (2003) pp. 1215-1218.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.