Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 11,
  • Issue 6,
  • pp. 506-511
  • (2015)

Amorphous Titanium Oxide Semiconductors on Quasi-Crystal-Like InGaZnO Channels for Thin Film Transistor Applications

Not Accessible

Your library or personal account may give you access

Abstract

This paper reports an InGaZnO thin-film transistor with titanium-oxide semiconductor as channel capping layer. Based on the experimental results, the titanium-oxide semiconductor has the function of not only a surface passivation layer to reduce the defect states localized at grain boundaries near source/drain contacts, but also a mobility booster to enhance electric field across channel. Compared to control IGZO TFT, the crystalline IGZO TFTs with titanium-oxide semiconductor exhibits an improved performance of a low drive voltage of ${<}{{5 V}}$ , a low threshold voltage of 1.9 V, a low sub-threshold swing of 244 mV/decade , and a high mobility of 13.7 cm $^{2}{{/V}}\cdot{{s}}$ . The simple titanium-oxide capping process have been demonstrated in this work, which provides considerable potential for further display applications requiring a low power operation and a low-temperature fabrication.

© 2014 IEEE

PDF Article
More Like This
Optical and electrical properties of In2MgO4 thin film for transistors

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 8(11) 3438-3446 (2018)

Ultraviolet laser damage mechanisms of amorphous InGaZnO4 thin films

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 9(6) 2545-2552 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.