Abstract

Visible light from silicon junctions under avalanche breakdown can be used to create microdisplay systems with integrated light sources. Junctions available in standard CMOS usually breaks down at much larger voltages than the typical operating voltage for integrated circuitry. It is possible to reduce the operating voltage of by making use of techniques which changes the electric field profile in light sources based on hot carrier electroluminescence such as electric field reach through between two highly doped implant regions. This work successfully demonstrates the possibility of tailoring the operating voltage and quantifying the optical performance in an integrated microdisplay consisting of a 128 by 96 pixel array based on light sources in standard CMOS. Based on the approach followed it becomes possible to integrate light sources in such a manner that it can coexist and interact with other on-chip analog and digital circuitry. The requirements for architectural features of a microdisplay in standard CMOS is discussed and it is shown to be possible to create large scale integrated circuits containing integrated light sources in standard CMOS without the need for postprocessing or additional back end modifications.

© 2014 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R. Newman, "Visible light from a Si p-n junction," Phys. Rev. 100, 700-703 (1955).
  2. M. du Plessis, H. Aharoni, L. W. Snyman, "Silicon LEDs fabricated in standard VLSI technology as components for all silicon monolithic integrated optoelectronic systems," IEEE J. Sel. Topics Quantum Electron. 8, 1412-1419 (2002).
  3. J. Bude, N. Sano, A. Yoshii, "Hot-carrier luminescence in Si," Phys. Rev. B 45, 5848-5856 (1992).
  4. M. du Plessis, P. J. Venter, E. Bellotti, "Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions," IEEE J. Quantum Electron. 49, 570-577 (2013).
  5. D. Armitage, I. Underwood, S.-T. Wu, Introduction to Microdisplays (Wiley, 2006).
  6. A. Ghosh, "Full-color OLED on silicon microdisplay," Proc. SPIE 4464 (2002) pp. 1-10.
  7. P. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. Von Behren, Y. Kostoulas, J. M. V. Vandyshev, K. Hirschman, "Light-emitting porous silicon: Materials science, properties, and device applications," IEEE J. Sel. Topics Quantum Electron. 1, 1123-1139 (1995).
  8. S. P. Duttagupta, K. D. Hirschman, L. Tsybeskov, P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338-341 (1996).
  9. P. Jaguiro, P. Katsuba, S. Lazarouk, A. Smirnov, "Porous silicon avalanche LEDs and their applications in optoelectronics and information displays," Acta Physica Polonica A 112, 1031-1036 (2007).
  10. A. R. Chen, A. I. Akinwande, H. S. Lee, "CMOS-based microdisplay with calibrated backplane," J. Solid-State Circuits 40, 2746-2755 (2005).
  11. P. J. Venter, M. du Plessis, A. W. Bogalecki, M. E. Goosen, P. Rademeyer, "An 8 $\times$ 64 pixel dot matrix microdisplay in 0.35- $\mu{\hbox{m}}$ complementary metal-oxide semiconductor technology," SPIE Opt. Eng. 51, 1-7 (2012).
  12. S. M. Sze, G. Gibbons, "Effect of junction curvature on breakdown voltage in semiconductors," Solid-State Electron. 9, 831-845 (1966).
  13. M. du Plessis, H. Aharoni, L. W. Snyman, "A silicon transconductance light emitting device (TRANSLED)," Sens. Actuators, A 80, 242-248 (2000).
  14. J. J. Vos, "Colorimetric and photometric properties of a 2 $^{\circ}$ fundamental observer," Color Res. Appl. 3, 125-128 (1978).
  15. L. T. Sharpe, A. Stockman, W. Jagla, H. Jägle, "A luminous efficiency function, ${\rm v}\ast({\rm lambda})$, for daylight adaptation," J. Vision 5, 948-968 (2005).
  16. A. W. Bogalecki, M. du Plessis, P. J. Venter, M. E. Goosen, I. J. Nell, "Integrated optical light directing structures in CMOS to improve light extraction efficiency," Proc. 22nd IEEE Int. Conf. on Microelectron. (2010).
  17. A. Chatterjee, B. Bhuva, R. Schrimpf, "High-speed light modulation in avalanche breakdown mode for Si diodes," IEEE Electron Device Lett. 25, 628-630 (2004).
  18. M. E. Goosen, P. J. Venter, M. du Plessis, A. W. Bogaleck, A. C. Alberts, P. Rademeyer, "A high-speed 0.35 $\mu{\hbox{m}}$ CMOS optical communication link," Proc. SPIE 8267, Optoelectronic Interconnects XII, 826716 (2012).
  19. S. Hecht, S. Shlaer, "Intermittent stimulation by light V. The relation between intensity and critical frequency for different parts of the spectrum," J. Gen. Physiol. 19, 965-977 (1936).
  20. A. M. Bloch, "Expérience sur la vision," Comptes Rendus de Séances de la Soc. Biol. 37, 493-495 (1885).
  21. F. Scharnowski, F. Hermens, M. H. Herzog, "Bloch's law and the dynamics of feature fusion," Vision Res. 47, 2444-2452 (2007).
  22. D. Kahneman, J. Norman, "The time-intensity relation in visual perception as a function of observer's task," J. Experim. Psychol. 38, 215-220 (1964).

2013 (1)

M. du Plessis, P. J. Venter, E. Bellotti, "Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions," IEEE J. Quantum Electron. 49, 570-577 (2013).

2012 (1)

P. J. Venter, M. du Plessis, A. W. Bogalecki, M. E. Goosen, P. Rademeyer, "An 8 $\times$ 64 pixel dot matrix microdisplay in 0.35- $\mu{\hbox{m}}$ complementary metal-oxide semiconductor technology," SPIE Opt. Eng. 51, 1-7 (2012).

2007 (2)

P. Jaguiro, P. Katsuba, S. Lazarouk, A. Smirnov, "Porous silicon avalanche LEDs and their applications in optoelectronics and information displays," Acta Physica Polonica A 112, 1031-1036 (2007).

F. Scharnowski, F. Hermens, M. H. Herzog, "Bloch's law and the dynamics of feature fusion," Vision Res. 47, 2444-2452 (2007).

2005 (2)

A. R. Chen, A. I. Akinwande, H. S. Lee, "CMOS-based microdisplay with calibrated backplane," J. Solid-State Circuits 40, 2746-2755 (2005).

L. T. Sharpe, A. Stockman, W. Jagla, H. Jägle, "A luminous efficiency function, ${\rm v}\ast({\rm lambda})$, for daylight adaptation," J. Vision 5, 948-968 (2005).

2004 (1)

A. Chatterjee, B. Bhuva, R. Schrimpf, "High-speed light modulation in avalanche breakdown mode for Si diodes," IEEE Electron Device Lett. 25, 628-630 (2004).

2002 (1)

M. du Plessis, H. Aharoni, L. W. Snyman, "Silicon LEDs fabricated in standard VLSI technology as components for all silicon monolithic integrated optoelectronic systems," IEEE J. Sel. Topics Quantum Electron. 8, 1412-1419 (2002).

2000 (1)

M. du Plessis, H. Aharoni, L. W. Snyman, "A silicon transconductance light emitting device (TRANSLED)," Sens. Actuators, A 80, 242-248 (2000).

1996 (1)

S. P. Duttagupta, K. D. Hirschman, L. Tsybeskov, P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338-341 (1996).

1995 (1)

P. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. Von Behren, Y. Kostoulas, J. M. V. Vandyshev, K. Hirschman, "Light-emitting porous silicon: Materials science, properties, and device applications," IEEE J. Sel. Topics Quantum Electron. 1, 1123-1139 (1995).

1992 (1)

J. Bude, N. Sano, A. Yoshii, "Hot-carrier luminescence in Si," Phys. Rev. B 45, 5848-5856 (1992).

1978 (1)

J. J. Vos, "Colorimetric and photometric properties of a 2 $^{\circ}$ fundamental observer," Color Res. Appl. 3, 125-128 (1978).

1966 (1)

S. M. Sze, G. Gibbons, "Effect of junction curvature on breakdown voltage in semiconductors," Solid-State Electron. 9, 831-845 (1966).

1964 (1)

D. Kahneman, J. Norman, "The time-intensity relation in visual perception as a function of observer's task," J. Experim. Psychol. 38, 215-220 (1964).

1955 (1)

R. Newman, "Visible light from a Si p-n junction," Phys. Rev. 100, 700-703 (1955).

1936 (1)

S. Hecht, S. Shlaer, "Intermittent stimulation by light V. The relation between intensity and critical frequency for different parts of the spectrum," J. Gen. Physiol. 19, 965-977 (1936).

1885 (1)

A. M. Bloch, "Expérience sur la vision," Comptes Rendus de Séances de la Soc. Biol. 37, 493-495 (1885).

Acta Physica Polonica A (1)

P. Jaguiro, P. Katsuba, S. Lazarouk, A. Smirnov, "Porous silicon avalanche LEDs and their applications in optoelectronics and information displays," Acta Physica Polonica A 112, 1031-1036 (2007).

Color Res. Appl. (1)

J. J. Vos, "Colorimetric and photometric properties of a 2 $^{\circ}$ fundamental observer," Color Res. Appl. 3, 125-128 (1978).

Comptes Rendus de Séances de la Soc. Biol. (1)

A. M. Bloch, "Expérience sur la vision," Comptes Rendus de Séances de la Soc. Biol. 37, 493-495 (1885).

IEEE J. Sel. Topics Quantum Electron. (1)

P. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. Von Behren, Y. Kostoulas, J. M. V. Vandyshev, K. Hirschman, "Light-emitting porous silicon: Materials science, properties, and device applications," IEEE J. Sel. Topics Quantum Electron. 1, 1123-1139 (1995).

IEEE Electron Device Lett. (1)

A. Chatterjee, B. Bhuva, R. Schrimpf, "High-speed light modulation in avalanche breakdown mode for Si diodes," IEEE Electron Device Lett. 25, 628-630 (2004).

IEEE J. Quantum Electron. (1)

M. du Plessis, P. J. Venter, E. Bellotti, "Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions," IEEE J. Quantum Electron. 49, 570-577 (2013).

IEEE J. Sel. Topics Quantum Electron. (1)

M. du Plessis, H. Aharoni, L. W. Snyman, "Silicon LEDs fabricated in standard VLSI technology as components for all silicon monolithic integrated optoelectronic systems," IEEE J. Sel. Topics Quantum Electron. 8, 1412-1419 (2002).

J. Experim. Psychol. (1)

D. Kahneman, J. Norman, "The time-intensity relation in visual perception as a function of observer's task," J. Experim. Psychol. 38, 215-220 (1964).

J. Gen. Physiol. (1)

S. Hecht, S. Shlaer, "Intermittent stimulation by light V. The relation between intensity and critical frequency for different parts of the spectrum," J. Gen. Physiol. 19, 965-977 (1936).

J. Solid-State Circuits (1)

A. R. Chen, A. I. Akinwande, H. S. Lee, "CMOS-based microdisplay with calibrated backplane," J. Solid-State Circuits 40, 2746-2755 (2005).

J. Vision (1)

L. T. Sharpe, A. Stockman, W. Jagla, H. Jägle, "A luminous efficiency function, ${\rm v}\ast({\rm lambda})$, for daylight adaptation," J. Vision 5, 948-968 (2005).

Nature (1)

S. P. Duttagupta, K. D. Hirschman, L. Tsybeskov, P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338-341 (1996).

Phys. Rev. (1)

R. Newman, "Visible light from a Si p-n junction," Phys. Rev. 100, 700-703 (1955).

Phys. Rev. B (1)

J. Bude, N. Sano, A. Yoshii, "Hot-carrier luminescence in Si," Phys. Rev. B 45, 5848-5856 (1992).

Sens. Actuators, A (1)

M. du Plessis, H. Aharoni, L. W. Snyman, "A silicon transconductance light emitting device (TRANSLED)," Sens. Actuators, A 80, 242-248 (2000).

Solid-State Electron. (1)

S. M. Sze, G. Gibbons, "Effect of junction curvature on breakdown voltage in semiconductors," Solid-State Electron. 9, 831-845 (1966).

SPIE Opt. Eng. (1)

P. J. Venter, M. du Plessis, A. W. Bogalecki, M. E. Goosen, P. Rademeyer, "An 8 $\times$ 64 pixel dot matrix microdisplay in 0.35- $\mu{\hbox{m}}$ complementary metal-oxide semiconductor technology," SPIE Opt. Eng. 51, 1-7 (2012).

Vision Res. (1)

F. Scharnowski, F. Hermens, M. H. Herzog, "Bloch's law and the dynamics of feature fusion," Vision Res. 47, 2444-2452 (2007).

Other (4)

D. Armitage, I. Underwood, S.-T. Wu, Introduction to Microdisplays (Wiley, 2006).

A. Ghosh, "Full-color OLED on silicon microdisplay," Proc. SPIE 4464 (2002) pp. 1-10.

A. W. Bogalecki, M. du Plessis, P. J. Venter, M. E. Goosen, I. J. Nell, "Integrated optical light directing structures in CMOS to improve light extraction efficiency," Proc. 22nd IEEE Int. Conf. on Microelectron. (2010).

M. E. Goosen, P. J. Venter, M. du Plessis, A. W. Bogaleck, A. C. Alberts, P. Rademeyer, "A high-speed 0.35 $\mu{\hbox{m}}$ CMOS optical communication link," Proc. SPIE 8267, Optoelectronic Interconnects XII, 826716 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.