Abstract

In this paper, we present a study on electrical and optical characteristics of n-type tin-oxide nanowires integrated based on top-down scale-up strategy. Through a combination of contact printing and plasma based back-channel passivation, we have achieved stable electrical characteristics with standard deviation in mobility and threshold voltage of 9.1% and 25%, respectively, for a large area of 1$\times$1 ${{cm}}^{2}$ area. Through use of contact printing, high alignment of nanowires was achieved thus minimizing the number of nanowire-nanowire junctions, which serve to limit carrier transport in the channel. In addition, persistent photoconductivity has been observed, which we attribute to oxygen vacancy ionization and subsequent elimination using a gate pulse driving scheme.

© 2014 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, "Fully transparent thin-film transistor devices based on ${{SnO}}_{2}$ nanowires," Nano Lett. 7, 2463-9 (2007).
  2. C. Sun, N. Mathews, M. Zheng, C. H. Sow, L. H. Wong, S. G. Mhaisalkar, "Aligned tin oxide nanonets for high-performance transistors," J. Phys. Chem. C 114, 1331-1336 (2010).
  3. Y. Nishio, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Short-channel nanowire transistor using a nanoporous crystal semiconductor ${{12}}{{CaO}} \cdot {{7}}{{Al}}_{2}{{O}}_{3}$ ," Mater. Sci. Eng. B 173, 37-40 (2010).
  4. V. V. Sysoev, "Percolating ${{SnO}}_{2}$ nanowire network as a stable gas sensor: Direct comparison of long-term performance versus ${{SnO}}_{2}$ nanoparticle films," Sensors and Actuators B: Chem. 139, 699 (2009).
  5. C. Young-Jin, "Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity," Nanotechnol. 19, 095508 (2008).
  6. S. Gubbala, V. Chakrapani, V. Kumar, M. K. Sunkara, "Band-edge engineered hybrid structures for dye sensitized solar cells based on SnO2 nanowires," Adv. Funct. Mater. 18, 2411-2418 (2008).
  7. N. Mathews, "Oxide nanowire networks and their electronic and optoelectronic characteristics," Nanoscale 2, 1984-1998 (2010).
  8. Y. J. Ma, F. Zhou, L. Lu, Z. Zhang, "Low-temperature transport properties of individual ${{SnO}}_{2}$ nanowires," Solid State Commun. 130, 313 (2004).
  9. M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, "Field-effect transistors based on single semiconducting oxide nanobelts," J. Phys. Chem. B 107, 659 (2003).
  10. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, "High performance silicon nanowire field effect transistors," Nano Lett. 3, 149-152 (2003).
  11. F. M. Hossain, "Modeling and simulation of polycrystalline ZnO thin-film transistors," J. Appl. Phys. 94, 7768 (2003).
  12. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  13. S. Jeon, S.-E. Ahn, I. Song, C. J. Kim, U.-I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, K. Kim, "Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays," Nature Mater. 11, 301-305 (2012).

2012 (1)

S. Jeon, S.-E. Ahn, I. Song, C. J. Kim, U.-I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, K. Kim, "Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays," Nature Mater. 11, 301-305 (2012).

2010 (3)

C. Sun, N. Mathews, M. Zheng, C. H. Sow, L. H. Wong, S. G. Mhaisalkar, "Aligned tin oxide nanonets for high-performance transistors," J. Phys. Chem. C 114, 1331-1336 (2010).

Y. Nishio, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Short-channel nanowire transistor using a nanoporous crystal semiconductor ${{12}}{{CaO}} \cdot {{7}}{{Al}}_{2}{{O}}_{3}$ ," Mater. Sci. Eng. B 173, 37-40 (2010).

N. Mathews, "Oxide nanowire networks and their electronic and optoelectronic characteristics," Nanoscale 2, 1984-1998 (2010).

2009 (1)

V. V. Sysoev, "Percolating ${{SnO}}_{2}$ nanowire network as a stable gas sensor: Direct comparison of long-term performance versus ${{SnO}}_{2}$ nanoparticle films," Sensors and Actuators B: Chem. 139, 699 (2009).

2008 (2)

C. Young-Jin, "Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity," Nanotechnol. 19, 095508 (2008).

S. Gubbala, V. Chakrapani, V. Kumar, M. K. Sunkara, "Band-edge engineered hybrid structures for dye sensitized solar cells based on SnO2 nanowires," Adv. Funct. Mater. 18, 2411-2418 (2008).

2007 (1)

E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, "Fully transparent thin-film transistor devices based on ${{SnO}}_{2}$ nanowires," Nano Lett. 7, 2463-9 (2007).

2004 (1)

Y. J. Ma, F. Zhou, L. Lu, Z. Zhang, "Low-temperature transport properties of individual ${{SnO}}_{2}$ nanowires," Solid State Commun. 130, 313 (2004).

2003 (3)

M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, "Field-effect transistors based on single semiconducting oxide nanobelts," J. Phys. Chem. B 107, 659 (2003).

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, "High performance silicon nanowire field effect transistors," Nano Lett. 3, 149-152 (2003).

F. M. Hossain, "Modeling and simulation of polycrystalline ZnO thin-film transistors," J. Appl. Phys. 94, 7768 (2003).

Adv. Funct. Mater. (1)

S. Gubbala, V. Chakrapani, V. Kumar, M. K. Sunkara, "Band-edge engineered hybrid structures for dye sensitized solar cells based on SnO2 nanowires," Adv. Funct. Mater. 18, 2411-2418 (2008).

J. Appl. Phys. (1)

F. M. Hossain, "Modeling and simulation of polycrystalline ZnO thin-film transistors," J. Appl. Phys. 94, 7768 (2003).

J. Phys. Chem. B (1)

M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, "Field-effect transistors based on single semiconducting oxide nanobelts," J. Phys. Chem. B 107, 659 (2003).

J. Phys. Chem. C (1)

C. Sun, N. Mathews, M. Zheng, C. H. Sow, L. H. Wong, S. G. Mhaisalkar, "Aligned tin oxide nanonets for high-performance transistors," J. Phys. Chem. C 114, 1331-1336 (2010).

Mater. Sci. Eng. B (1)

Y. Nishio, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Short-channel nanowire transistor using a nanoporous crystal semiconductor ${{12}}{{CaO}} \cdot {{7}}{{Al}}_{2}{{O}}_{3}$ ," Mater. Sci. Eng. B 173, 37-40 (2010).

Nano Lett. (2)

E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, "Fully transparent thin-film transistor devices based on ${{SnO}}_{2}$ nanowires," Nano Lett. 7, 2463-9 (2007).

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, "High performance silicon nanowire field effect transistors," Nano Lett. 3, 149-152 (2003).

Nanoscale (1)

N. Mathews, "Oxide nanowire networks and their electronic and optoelectronic characteristics," Nanoscale 2, 1984-1998 (2010).

Nanotechnol. (1)

C. Young-Jin, "Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity," Nanotechnol. 19, 095508 (2008).

Nature Mater. (1)

S. Jeon, S.-E. Ahn, I. Song, C. J. Kim, U.-I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, K. Kim, "Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays," Nature Mater. 11, 301-305 (2012).

Sensors and Actuators B: Chem. (1)

V. V. Sysoev, "Percolating ${{SnO}}_{2}$ nanowire network as a stable gas sensor: Direct comparison of long-term performance versus ${{SnO}}_{2}$ nanoparticle films," Sensors and Actuators B: Chem. 139, 699 (2009).

Solid State Commun. (1)

Y. J. Ma, F. Zhou, L. Lu, Z. Zhang, "Low-temperature transport properties of individual ${{SnO}}_{2}$ nanowires," Solid State Commun. 130, 313 (2004).

Other (1)

S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.