Abstract

Hybrid sensor/display pixels and their operating schemes are proposed, simulated, and characterized. The circuit design implemented a phototransistor connected to a drive thin-film transistor (TFT) and an organic light-emitting diode (OLED). The circuits were fabricated using hydrogenated amorphous-silicon (a-Si:H) TFTs as a hybrid photosensor/switching device. The light sensitivity of the phototransistors and response to incident illumination were modeled and verified experimentally for different white-light intensities. The pixel gray scale was determined by the pulse-height voltage modulation from the phototransistor, which was varied by changing the light intensity. The resulting circuits have a wide dynamic range with a light to dark output current ratio of $10^{4}$ for TFTs having channel lengths of $<{{10}}\ \mu{m}$ and light intensity up to $\sim {{8}}\ {{mW/cm}}^{2}$. A 256-RGB-level imaging scale is possible with 5-nA steps for each grey scale in a pixel array matrix having a refresh rate of more than 200 Hz.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription