Abstract

Green phosphorescent inverted hybrid inorganic-organic light-emitting diodes (IHyLEDs) based on a simplified organic layer/${{WO}}_{3}$ structure have been demonstrated. The ${{WO}}_{3}$ layer enabled facile hole injection and transport, which was balanced by efficient electron injection from the indium-tin-oxide (ITO) cathode overcoated with nanometer-thick Ca. The IHyLEDs had a turn-on voltage of 6 V. At 20 ${{mA}}/{{cm}}^{2}$, it reached a luminance of 8133 ${{cd}}/{{m}} ^{2}$ and a current efficiency of 40 cd/A, which were 43% higher than a similar IHyLED with a conventional Al/LiF electron injection layer. The IHyLEDs with Ca also exhibited improved reliability under constant-current stressing at 20 ${{mA}}/{{cm}}^{2}$.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription