Abstract

This paper presents a new 2D–3D switchable driving method for a 3D thin-film transistor liquid crystal display (TFT-LCD) TV. The proposed driving method, which uses a film-type patterned retarder (FPR), can reduce unnecessary power consumption while displaying 2D images. The proposed driving method can change a part of a pixel according to the driving mode; the part is operated as a black matrix in a 3D display mode, whereas in a 2D display mode, the part is operated as a normal pixel. To realize the proposed driving method without increasing the data signal rates, the number of gate driver integrated circuits (ICs), and the bezel size of the panel, a novel pixel structure and an integrated a-Si:H gate driver, which can be implemented in a small size, are developed. The power consumption of the proposed driving method measured at the full white gray level is 67 W in a 47-in full-high-definition (FHD) TFT-LCD TV. This result shows that the power consumption of the proposed driving method decreases by 28% compared with that of the conventional driving method in the 2D display mode.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription